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Preface

The text of this book has its origins more than twenty-five years ago. In
the seminar of the Dutch Singularity Theory project in 1982 and 1983, the
second-named author gave a series of lectures on Mixed Hodge Structures and
Singularities, accompanied by a set of hand-written notes. The publication of
these notes was prevented by a revolution in the subject due to Morihiko
Saito: the introduction of the theory of Mixed Hodge Modules around 1985.
Understanding this theory was at the same time of great importance and very
hard, due to the fact that it unifies many di↵erent theories which are quite
complicated themselves: algebraic D-modules and perverse sheaves.

The present book intends to provide a comprehensive text about Mixed
Hodge Theory with a view towards Mixed Hodge Modules. The approach
to Hodge theory for singular spaces is due to Navarro and his collaborators,
whose results provide stronger vanishing results than Deligne’s original theory.
Navarro and Guillén also filled a gap in the proof that the weight filtration
on the nearby cohomology is the right one. In that sense the present book
corrects and completes the second-named author’s thesis.

Many suggestions and corrections to this manuscript were made by sev-
eral colleagues: Benôıt Audoubert, Alex Dimca, Alan Durfee, Alexey Gorinov,
Dick Hain, Theo de Jong, Rainer Kaenders, Morihiko Saito, Vasudevan Srini-
vas, Duco van Straten, to mention a few. Thanks to all of you!

During the preparation of the manuscript the authors received hospitality
and support from the universities of Grenoble and Nijmegen. Moreover, we
thank Annie for providing us excellent working conditions at Veldhoven.

Chris Peters, Joseph SteenbrinkGrenoble/Nijmegen, August 2007
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5.4 Cup Product and the Künneth Formula. . . . . . . . . . . . . . . . . . . . 133
5.5 Relative Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.5.1 Construction of the Mixed Hodge Structure . . . . . . . . . . . 135
5.5.2 Cohomology with Compact Support . . . . . . . . . . . . . . . . . 137

6 Singular Varieties: Complementary Results . . . . . . . . . . . . . . . . 141
6.1 The Leray Filtration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.2 Deleted Neighbourhoods of Algebraic Sets . . . . . . . . . . . . . . . . . . 144

6.2.1 Mixed Hodge Complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.2.2 Products and Deleted Neighbourhoods . . . . . . . . . . . . . . . 146
6.2.3 Semi-purity of the Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.3 Cup and Cap Products, and Duality . . . . . . . . . . . . . . . . . . . . . . . 152
6.3.1 Duality for Cohomology with Compact Supports . . . . . . 152
6.3.2 The Extra-Ordinary Cup Product. . . . . . . . . . . . . . . . . . . . 156



Contents IX

7 Applications to Algebraic Cycles and to Singularities . . . . . . 161
7.1 The Hodge Conjectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.1.1 Versions for Smooth Projective Varieties . . . . . . . . . . . . . 161
7.1.2 The Hodge Conjecture and the Intermediate Jacobian . . 164
7.1.3 A Version for Singular Varieties . . . . . . . . . . . . . . . . . . . . . 166

7.2 Deligne Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
7.2.1 Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
7.2.2 Cycle Classes for Deligne Cohomology . . . . . . . . . . . . . . . 172

7.3 The Filtered De Rham Complex And Applications . . . . . . . . . . . 173
7.3.1 The Filtered De Rham Complex . . . . . . . . . . . . . . . . . . . . . 173
7.3.2 Application to Vanishing Theorems . . . . . . . . . . . . . . . . . . 178
7.3.3 Applications to Du Bois Singularities . . . . . . . . . . . . . . . . 183

Part III Mixed Hodge Structures on Homotopy Groups

8 Hodge Theory and Iterated Integrals . . . . . . . . . . . . . . . . . . . . . . 191
8.1 Some Basic Results from Homotopy Theory . . . . . . . . . . . . . . . . . 192
8.2 Formulation of the Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . 196
8.3 Loop Space Cohomology and the Homotopy De Rham Theorem199

8.3.1 Iterated Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
8.3.2 Chen’s Version of the De Rham Theorem . . . . . . . . . . . . . 201
8.3.3 The Bar Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
8.3.4 Iterated Integrals of 1-Forms . . . . . . . . . . . . . . . . . . . . . . . . 204

8.4 The Homotopy De Rham Theorem for the Fundamental Group205
8.5 Mixed Hodge Structure on the Fundamental Group . . . . . . . . . . 208
8.6 The Sullivan Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
8.7 Mixed Hodge Structures on the Higher Homotopy Groups . . . . 213

9 Hodge Theory and Minimal Models . . . . . . . . . . . . . . . . . . . . . . . 219
9.1 Minimal Models of Di↵erential Graded Algebras . . . . . . . . . . . . . 220
9.2 Postnikov Towers and Minimal Models; the Simply Connected

Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
9.3 Mixed Hodge Structures on the Minimal Model . . . . . . . . . . . . . 224
9.4 Formality of Compact Kähler Manifolds . . . . . . . . . . . . . . . . . . . . 230

9.4.1 The 1-Minimal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
9.4.2 The De Rham Fundamental Group . . . . . . . . . . . . . . . . . . 232
9.4.3 Formality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234



X Contents

Part IV Hodge Structures and Local Systems

10 Variations of Hodge Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
10.1 Preliminaries: Local Systems over Complex Manifolds . . . . . . . . 239
10.2 Abstract Variations of Hodge Structure . . . . . . . . . . . . . . . . . . . . 241
10.3 Big Monodromy Groups, an Application . . . . . . . . . . . . . . . . . . . . 245
10.4 Variations of Hodge Structures Coming From Smooth Families 248

11 Degenerations of Hodge Structures . . . . . . . . . . . . . . . . . . . . . . . . 253
11.1 Local Systems Acquiring Singularities . . . . . . . . . . . . . . . . . . . . . . 253

11.1.1 Connections with Logarithmic Poles . . . . . . . . . . . . . . . . . 253
11.1.2 The Riemann-Hilbert Correspondence (I) . . . . . . . . . . . . . 256

11.2 The Limit Mixed Hodge Structure on Nearby Cycle Spaces . . . 259
11.2.1 Asymptotics for Variations of Hodge Structure over a

Punctured Disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
11.2.2 Geometric Set-Up and Preliminary Reductions . . . . . . . . 260
11.2.3 The Nearby and Vanishing Cycle Functor . . . . . . . . . . . . 262
11.2.4 The Relative Logarithmic de Rham Complex and

Quasi-unipotency of the Monodromy . . . . . . . . . . . . . . . . . 263
11.2.5 The Complex Monodromy Weight Filtration and the

Hodge Filtration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
11.2.6 The Rational Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
11.2.7 The Mixed Hodge Structure on the Limit . . . . . . . . . . . . . 272

11.3 Geometric Consequences for Degenerations . . . . . . . . . . . . . . . . . 274
11.3.1 Monodromy, Specialization and Wang Sequence . . . . . . . 274
11.3.2 The Monodromy and Local Invariant Cycle Theorems . . 279

11.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

12 Applications of Asymptotic Hodge theory . . . . . . . . . . . . . . . . . 289
12.1 Applications to Singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

12.1.1 Localizing Nearby Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
12.1.2 A Mixed Hodge Structure on the Cohomology of

Milnor Fibres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
12.1.3 The Spectrum of Singularities . . . . . . . . . . . . . . . . . . . . . . . 293

12.2 An Application to Cycles: Grothendieck’s Induction Principle . 295

13 Perverse Sheaves and D-Modules . . . . . . . . . . . . . . . . . . . . . . . . . . 301
13.1 Verdier Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

13.1.1 Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
13.1.2 The Dualizing Complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
13.1.3 Statement of Verdier Duality . . . . . . . . . . . . . . . . . . . . . . . 304
13.1.4 Extraordinary Pull Back . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

13.2 Perverse Complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
13.2.1 Intersection Homology and Cohomology . . . . . . . . . . . . . . 306



Contents XI

13.2.2 Constructible and Perverse Complexes . . . . . . . . . . . . . . . 308
13.2.3 An Example: Nearby and Vanishing Cycles . . . . . . . . . . . 312

13.3 Introduction to D-Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
13.3.1 Integrable Connections and D-Modules . . . . . . . . . . . . . . 313
13.3.2 From Left to Right and Vice Versa . . . . . . . . . . . . . . . . . . 315
13.3.3 Derived Categories of D-modules . . . . . . . . . . . . . . . . . . . . 316
13.3.4 Inverse and Direct Images . . . . . . . . . . . . . . . . . . . . . . . . . . 317
13.3.5 An Example: the Gauss-Manin System . . . . . . . . . . . . . . . 320

13.4 Coherent D-Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
13.4.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
13.4.2 Good Filtrations and Characteristic Varieties . . . . . . . . . 323
13.4.3 Behaviour under Direct and Inverse Images . . . . . . . . . . . 325

13.5 Filtered D-modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
13.5.1 Derived Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
13.5.2 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
13.5.3 Functoriality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

13.6 Holonomic D-Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
13.6.1 Symplectic Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
13.6.2 Basics on Holonomic D-Modules . . . . . . . . . . . . . . . . . . . . 331
13.6.3 The Riemann-Hilbert Correspondence (II) . . . . . . . . . . . . 332

14 Mixed Hodge Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
14.1 An Axiomatic Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

14.1.1 The Axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
14.1.2 First Consequences of the Axioms . . . . . . . . . . . . . . . . . . . 340
14.1.3 Spectral Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
14.1.4 Intersection Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
14.1.5 Refined Fundamental Classes . . . . . . . . . . . . . . . . . . . . . . . 347

14.2 The Kashiwara-Malgrange Filtration . . . . . . . . . . . . . . . . . . . . . . . 347
14.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
14.2.2 The Rational V -Filtration . . . . . . . . . . . . . . . . . . . . . . . . . . 349

14.3 Polarizable Hodge Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
14.3.1 Hodge Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
14.3.2 Polarizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
14.3.3 Lefschetz Operators and the Decomposition Theorem . . 359

14.4 Mixed Hodge Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
14.4.1 Variations of Mixed Hodge Structure . . . . . . . . . . . . . . . . 362
14.4.2 Defining Mixed Hodge Modules . . . . . . . . . . . . . . . . . . . . . 365
14.4.3 About the Axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
14.4.4 Application: Vanishing Theorems . . . . . . . . . . . . . . . . . . . . 367
14.4.5 The Motivic Hodge Character and Motivic Chern

Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368



XII Contents

Part V Appendices

A Homological Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
A.1 Additive and Abelian Categories . . . . . . . . . . . . . . . . . . . . . . . . . . 375

A.1.1 Pre-Abelian Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
A.1.2 Additive Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

A.2 Derived Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
A.2.1 The Homotopy Category . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
A.2.2 The Derived Category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
A.2.3 Injective and Projective Resolutions . . . . . . . . . . . . . . . . . 386
A.2.4 Derived Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
A.2.5 Properties of the Ext-functor . . . . . . . . . . . . . . . . . . . . . . . 391
A.2.6 Yoneda Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

A.3 Spectral Sequences and Filtrations . . . . . . . . . . . . . . . . . . . . . . . . . 394
A.3.1 Filtrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
A.3.2 Spectral Sequences and Exact Couples . . . . . . . . . . . . . . . 397
A.3.3 Filtrations Induce Spectral Sequences . . . . . . . . . . . . . . . . 398
A.3.4 Derived Functors and Spectral Sequences . . . . . . . . . . . . . 401

B Algebraic and Di↵erential Topology . . . . . . . . . . . . . . . . . . . . . . . 405
B.1 Singular (Co)homology and Borel-Moore Homology . . . . . . . . . . 405

B.1.1 Basic Definitions and Tools . . . . . . . . . . . . . . . . . . . . . . . . . 405
B.1.2 Pairings and Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409

B.2 Sheaf Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
B.2.1 The Godement Resolution and Cohomology . . . . . . . . . . 410
B.2.2 Cohomology and Supports . . . . . . . . . . . . . . . . . . . . . . . . . . 412
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Introduction

Brief History of the Subject

One can roughly divide the history of mixed Hodge theory in four periods; the
period up to 1967, the period 1967–1977, the period 1977–1987, the period
after 1987.

The first period could be named classical. The “prehistory” consists of
work by Abel, Jacobi, Gauss, Legendre and Weierstrass on the periods of inte-
grals of rational one-forms. It culminates in Poincaré’s and Lefschetz’s work,
reported on in Lefschetz’s classic monograph [Lef]. The second landmark in
the classical era proper is Hodge’s decomposition theorem for the cohomology
of a compact Kähler manifold [Ho47]. To explain the statement, we begin
by noting that a complex manifold always admits a hermitian metric. As
in di↵erential geometry one wants to normalise it by choosing holomorphic
coordinates in which the metric osculates to second order to the constant
hermitian metric. This turns out not be always possible and one reserves for
such a special metric the name Kähler metric. The existence of such a met-
ric implies that the decomposition of complex-valued di↵erential forms into
type persists on the level of cohomology classes. We recall here that a com-
plex form ↵ has type (p, q), if in any local system of holomorphic coordinates
(z1, . . . , zn), the form ↵ is a linear combinations of forms of the form (di↵eren-
tiable function)·(dzi1

^ · · ·^ dzip ^ dzj1
^ · · ·^ dzjq ). Indeed, Hodge’s theorem

(See Theorem 1.8) states that this induces a decomposition

Hm(X; C) =
M

p+q=m

Hp,q(X), (HD)

where the term on the right denotes cohomology classes representable by
closed forms of type (p, q). The space Hp,q(X) is the complex conjugate of
Hq,p, where the complex conjugation is taken with respect to the real structure
given by Hm(X; C) = Hm(X; R)⌦RC. A decomposition (HD) with this reality
constraint by definition is the prototype of a weight m Hodge structure.
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The Hodge decomposition fails in general, as demonstration by the Hopf
manifolds, complex m-dimensional manifolds homeomorphic to S1 ⇥ S2m�1.
Indeed H1 being one-dimensional for these manifolds, one can never have
a splitting H1 = H1,0 � H0,1 with the second subspace the complex con-
jugate of the first. It follows that complex manifolds do not always admit
Kähler metrics. A complex manifold which does admit such a metric is called
a Kähler manifold. Important examples are the complex projective manifolds:
the Fubini-Study metric (Examples 1.5.2) on projective space is Kähler and
restricts to a Kähler metric on every submanifold.

It is not hard to see that the fundamental class of a complex submani-
fold of a Kähler manifold is of pure type (c, c), where c is the codimension
(Prop. 1.14). This applies in particular to submanifolds of complex projec-
tive manifolds. By the GAGA-principle these are precisely the algebraic sub-
manifolds. Also singular codimension c subvarieties can be shown to have a
fundamental class of type (c, c), and by linearity, so do cycles: finite formal lin-
ear combinations of subvarieties with integral or rational coe�cients. Hodge’s
famous conjecture states that, conversely, any rational class of type (c, c) is
the fundamental class of a rational cycle of codimension c. This conjecture,
stated in [Ho50], is one of the millennium one-million dollar conjectures of the
Clay-foundation and is still largely open.

The second period starts in the late 1960’s with the work of Gri�ths
[Grif68, Grif69] which can be considered as neo-classical in that this work
goes back to Poincaré and Lefschetz. In the monograph [Lef], only weight
one Hodge structures depending on parameters are studied. In Gri�ths’s ter-
minology these are weight one variations of Hodge structure. Indeed, in the
cited work of Gri�ths this notion is developed for any weight and it is shown
that there are remarkable di↵erences with the classical weight one case. For
instance, although the ordinary Jacobian is a polarized abelian variety, their
higher weights equivalents, the intermediate Jacobians, need not be polarized.
Abel-Jacobi maps generalize in this set-up (see § 7.1.2) and Gri�ths uses these
in [Grif69] to explain that higher codimension cycles behave fundamentally
di↵erent than divisors.

All these developments concern smooth projective varieties and cycles on
them. For a not necessarily smooth and/or compact complex algebraic variety
the cohomology groups cannot be expected to have a Hodge decomposition.
For instance H1 can have odd rank. Deligne realized that one could generalize
the notion of a Hodge structure to that of a mixed Hodge structure. There
should be an increasing filtration, the weight filtration, so that m-th graded
quotient has a pure Hodge structure of weight m. This fundamental insight
has been worked out in [Del71, Del74].

Instead of looking at the cohomology of a fixed variety, one can look at a
family of varieties. If the family is smooth and projective all fibres are complex
projective and the cohomology groups of a fixed rank m assemble to give the
prototype of a variation of weight m Hodge structure. An important observa-
tion at this point is that giving a Hodge decomposition (HD) is equivalent to
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giving a Hodge filtration

F pHm(X; C) :=
M

r�p

Hr,s(X), F p � F
m�p+1 = Hm(X; C), (HF)

where the last equality is the defining property of a Hodge filtration. The
point here is that the Hodge filtration varies holomorphically with X while
the subbundles Hp,q(X) in general don’t.

If the family acquires singularities, one may try to see how the Hodge
structure near a singular fibre degenerates. So one is led to a one-parameter
degeneration X ! � over the disk �, where the family is smooth over the
punctured disk �⇤ = � � {0}. So for t 2 �⇤ cohomology group Hm(Xt; C)
has a classical weight m Hodge structure. In order to capture the degenera-
tion Hodge theoretically this classical structure has to be replaced by a mixed
Hodge structure, the so-called limit mixed Hodge structure. Gri�ths conjec-
tured in [Grif70] that the monodromy action defines a weight filtration which
together with a certain limiting Hodge filtration should give the correct mixed
Hodge structure. Moreover, this mixed Hodge structure should reveal restric-
tions on the monodromy action, and notably should imply a local invariant
cycle theorem: all cohomology classes in a fibre which are invariant under mon-
odromy are restriction from classes on the total space. In the algebraic setting
this was indeed proved by Steenbrink in [Ste76]. Clemens [Clem77] treated the
Kähler setting, while Schmid [Sch73] considered abstract variations of Hodge
structure over the punctured disk. We should also mention Varchenko’s ap-
proach [Var80] using asymptotic expansions of period integrals, and which
goes back to Malgrange [Malg74].

The third period, is a period of on the one hand consolidation, and
on the other hand widening the scope of application of Hodge theory. We
mention for instance the extension of Schmid’s work to the several variables
[C-K-S86] which led to an important application to the Hodge conjecture
[C-D-K]. In another direction, instead of varying Hodge structures one could
try to enlarge the definition of a variation of Hodge structure by postulating a
second filtration, the weight filtration which together with the Hodge filtration
(HF) on every stalk induces a mixed Hodge structure. Indeed, this leads to
what is called a variation of mixed Hodge structure. On the geometric side, the
fibre cohomology of families of possible singular algebraic varieties should give
such a variation, which for obvious reasons is called “geometric”. These last
variations enjoy strong extra properties, subsumed in the adjective admissible.
Their study has been started by Steenbrink and Zucker [St-Z, Zuc85], and
pursued by Kashiwara [Kash86].

On the abstract side we have Carlson’s theory [Car79, Car85b, Car87] of
the extension classes in mixed Hodge theory, and the related work by Beilin-
son on absolute Hodge cohomology [Beil86]. Important are also the Deligne-
Beilinson cohomology groups; these can be considered as extensions in the
category of pure Hodge complexes and play a central role in unifying the clas-
sical class map and the Abel-Jacobi map. For a nice overview see [Es-V88].



4 Introduction

Continuing our discussion of the foundational aspects, we mention the alter-
native approach [G-N-P-P] to mixed Hodge theory on the cohomology of a
singular algebraic variety. It is based on cubical varieties instead of simplicial
varieties used in [Del74]. See also [Car85a].

In this period a start has been made to put mixed Hodge structures on
other geometric objects, in the first place on homotopy groups for which Mor-
gan found the first foundational results [Mor]. He not only put a mixed Hodge
structure on the higher homotopy groups of complex algebraic manifolds, but
showed that the minimal model of the Sullivan algebra for each stage of the ra-
tional Postnikov tower has a mixed Hodge structure. The fundamental group
being non-abelian a priori presents a di�culty and has to be replaced by a
suitably abelianized object, the De Rham fundamental group. Morgan relates
it to the 1-minimal model of the Sullivan algebra which also is shown to have
a mixed Hodge structure. In [Del-G-M-S] one finds a striking application to
the formality of the cohomology algebra of Kähler manifolds. For a further
geometric application see [C-C-M]. Navarro Aznar extended Morgan’s result
to possibly singular complex algebraic varieties [Nav87]. Alternatively, there
is Hain’s approach [Hain87, Hain87b] based on Chen’s iterated integrals. At
this point we should mention that the Hurewicz maps, which are natural
maps from homotopy to homology, turn out to be morphisms of mixed Hodge
structure.

A second important development concerns intersection homology and coho-
mology which is a Poincaré-duality homology theory for singular varieties. The
result is that for any compact algebraic variety X the intersection cohomology
group IHk(X; Q) carries a weight k pure Hodge structure compatible with the
pure Hodge structure on Hk(X̃; Q) for any desingularization ⇡ : X̃ ! X in
the sense that ⇡⇤ makes IHk(X; Q) a direct factor of IHk(X̃; Q) = Hk(X̃; Q).

There are two approaches. The first, which still belongs to this period uses
L2-cohomology and degenerating Hodge structures is employed in [C-K-S87]
and [Kash-Ka87b]. The drawback of this method is that the Hodge filtration
is not explicitly realized on the level of sheaves as in the classical and Deligne’s
approach. The second method remedies this, but belongs to the next period,
since it uses D-modules.

We now come to this last period, the post D-modules period. Let us
explain how D-modules enter the subject. A variation of Hodge structure with
base a smooth complex manifold X in particular consists of an underlying
local system V over X. The associated vector bundle V = V ⌦ OX thus has
a canonical flat connection. So one has directional derivatives and hence an
action of the sheaf DX of germs of holomorphic di↵erential operators on X.
In other words, V is a a DX -module.

At this point we have a pair (V, V) consisting of a DX -module and a
local system which correspond to each other. A Hodge module as defined
by Saito incorporates a third ingredient, a so called “good” filtration on the
DX -module. In our case this is the Hodge filtration F• which for historical
reasons is written as as increasing filtration, i.e. one puts Fk = F�k. The
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axiom of Gri�ths tranversality just means that this filtration is good in the
technical sense. The resulting triple (V,F•, V) indeed gives an example of a
Hodge module of weight n. It is called a smooth Hodge module. 1

Saito has developed the basic theory of Hodge modules in [Sa87, Sa88,
Sa90]. The actual definition of a Hodge module is complicated, since it is
by induction on the dimension of the support. To have a good functorial
theory of Hodge modules, one should restrict to polarized variations of Hodge
structure and their generalizations the polarized Hodge modules. If we are
“going mixed”, any polarized admissible variation of mixed Hodge structure
over a smooth algebraic base is the prototype of a mixed Hodge module. But,
again, the definition of a mixed Hodge module is complex and hard to grasp.
Among the successes of this theory we mention the existence of a natural
pure Hodge structure on intersection cohomology groups, the unification of
the proofs of vanishing theorems, and a nice coherent theory of fundamental
classes.

A second important development that took place in this period is the
emergence of non-abelian Hodge theory. Classical Hodge theory treats har-
monic theory for maps to the abelian group C

⇤ which governs line bundles: in
contrast, non-abelian Hodge theory deals with harmonic maps to non-abelian
groups like GL(n), n � 2. This point of view leads to so-called Higgs bundles
which are weaker versions of variations of Hodge structure that come up when
one deforms variations of Hodge structure. It has been developed mainly by
Simpson, [Si92, Si94, Si95], with contributions of Corlette [Cor]. This work
leads to striking limitations on the kind of fundamental group a compact
Kähler manifold can have. A similar approach for the mixed situation is still
largely missing.

There are many other important developments of which we only mention
two. The first concerns the relation of Hodge theory to the logarithmic struc-
tures invented by Fontaine, Kato and Illusie, which was studied in [Ste95].
A second topic is mixed Hodge structures on Lawson homology, a subject
whose study started in [F-M], but which has not yet been properly pursued
afterwards.

Contents of the Book

The book is divided in four parts which we now discuss briefly. The first part,
entitled basic Hodge theory comprises the first three chapters.

In Chapter 1 in order to motivate the concept of a Hodge structure we give
the statement of the Hodge decomposition theorem. Likewise, polarizations
are motivated by the Lefschetz decomposition theorem. It has a surprising
1 If you want such a triple to behave well under various duality operators it turns

out to be better to replace V by a complex placed in degree �n = � dim X so
that it becomes a perverse sheaf. See Chapter 13 for details.
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topological consequence: the Leray spectral sequence for smooth projective
families degenerates at the E2-term. In particular, a theorem alluded to in the
Historical Part holds in this particular situation: the invariant cycle theorem
(cycles invariant under monodromy are restrictions of global cycles).

Chapter 2 explains the basics about pure Hodge theory. In particular the
crucial notions of a Hodge complex of weight m and a Hodge complex of
sheaves of weight m are introduced. The latter makes Hodge theory local in
the sense that if a cohomology group can be written as the hypercohomology
groups of a Hodge complex of sheaves, such a group inherit a Hodge structure.
This is what happens in the classical situation, but it requires some work
to explain it. In the course of this Chapter we are led to make an explicit
choice for a Hodge complex of sheaves on a given compact Kähler manifold,
the Hodge-De Rham complex of sheaves Z

Hdg

X
. Incorporated in this structure

are the Godement resolutions which we favour since they behave well with
respect to filtrations and with respect to direct images. The definition and
fundamental properties are explained in Appendix B.

These abstract considerations enable us to show that the cohomology
groups of X can have pure Hodge structure even if X itself is not a com-
pact Kähler manifold, but only bimeromorphic to such a manifold. In another
direction, we show that the cohomology of a possibly singular V -manifold
posses a pure Hodge structure.

The foundations for mixed Hodge theory are laid down in Chapter 3. The
notions of Hodge complexes and Hodge complexes of sheaves are widened to
mixed Hodge complexes and mixed Hodge complexes of sheaves. The idea is
as in the pure case: the construction of a mixed Hodge structure on cohomo-
logical objects can be reduced to a local study. Crucial here is the technique of
spectral sequences which works well because the axioms imply that the Hodge
filtration induces only one filtration on the successive steps in the spectral
sequence (Deligne’s comparison of three filtrations). Next, the important con-
struction of the cone in the category of mixed Hodge complexes of sheaves is
explained. Since relative cohomology can be viewed as a cone this paves the
way for mixed Hodge structures on relative cohomology, on cohomology with
compact support, and on local cohomology. The chapter concludes with Carl-
son’s theory of extensions of mixed Hodge structures and Beilinson’s theory
of absolute Hodge cohomology.

The second part of the book deals with mixed Hodge structures on coho-
mology groups and starts with Chapter 4 on smooth algebraic varieties. The
classical treatment of the weight filtration due to Deligne is complemented
by a more modern approach using logarithmic structures. This is needed in
Chapter 11 which deals with variations of Hodge structure.

Chapter 5 treats the cohomology of singular varieties. Instead of Deligne’s
simplicial approach we explain the cubical treatment proposed by Guillén,
Navarro Aznar, Pascual-Gainza and F. Puerta.

The results from Chapter 5 are further extended in Chapter 6 where Ara-
pura’s work on the Leray spectral sequence is explained, followed by a treat-
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ment of cup and cap products and duality. This chapter ends with an applica-
tion to the cohomology of two geometric objects, halfway between an algebraic
and a purely topological structure: deleted neighbourhoods and links of closed
subvarieties of a complex algebraic variety.

In Chapter 7 we give applications of the theory which we developed so
far. First we explain the Hodge conjecture as generalized by Grothendieck,
secondly we briefly discuss Deligne cohomology and the relation to algebraic
cycles. Finally we introduce Du Bois’s filtered de Rham complex and give
applications to singularities.

The third part is entitled mixed Hodge structures on homotopy groups. We
first give the basics from homotopy theory enabling to make the transition
from homotopy groups to Hopf algebras. Next, we explain Chen’s homotopy
de Rham theorem and Hain’s bar construction on Hopf algebras. These two
ingredients are necessary to understand Hain’s approach to mixed Hodge the-
ory on homotopy which we give in Chapter 8. The older approach, due to
Sullivan and Morgan is explained in Chapter 9.

The fourth and last part is about local systems in relation to Hodge the-
ory and starts with the foundational Chapter 10. In Chapter 11 Steenbrink’s
approach to the limit mixed Hodge structure is explained from a more mod-
ern point of view which incorporates Deligne’s vanishing and nearby cycle
sheaves. The starting point is that the cohomology of any smooth fibre in a
one-parameter degeneration can be reconstructed as the cohomology of a par-
ticular sheaf on the singular fibre, the nearby cycle sheaf. So a mixed Hodge
structure can be put on cohomology by extending the nearby cycle sheaf to a
mixed Hodge complex of sheaves on the singular fibre. This is exactly what
we do in Chapter 11. Important applications are given next: the monodromy
theorem, the local invariant cycle theorem and the Clemens-Schmid exact
sequence.

Follows Chapter 12 with applications to singularities (the cohomology of
the Milnor fibre and the spectrum), and to cycles (Grothendieck’s induction
principle).

The fourth part is leading up to Saito’s theory which, as we explained
in the historical part, incorporates D-modules into Hodge theory through
the Riemann-Hilbert correspondence. This is explained in Chapter 13, where
the reader can find some foundational material on D-modules and perverse
sheaves. In the final Chapter 14 Saito’s theory is sketched. In this chapter
we axiomatize his theory and directly deduce the important applications we
mentioned in the Historical Part. We proceed giving ample detail on how to
construct Hodge modules as well as mixed Hodge modules, and briefly sketch
how the axioms can be verified. Clearly, many technical details had to be omit-
ted, but we hope to have clarified the overall structure. Many mathematicians
consider Saito’s formidable work to be rather impenetrable. The final chap-
ter is meant as an introductory guide and hopefully motivates an interested
researcher to penetrate deeper into the subject by reading the original articles.
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The book ends with three appendices: Appendix A with basics about de-
rived categories, spectral sequences and filtrations, Appendix B where several
fundamental results about the algebraic topology of varieties is assembled,
and Appendix C about stratifications and singularities.

Finally a word about what is not in this book. Due to incompetence on
behalf of the authors, we have not treated mixed Hodge theory from the
point of view of L2-theory. Hence we don’t say much on Zucker’s fundamental
work about L2-cohomology. Neither do we elaborate on Schmid’s work on
one-parameter degenerations of abstract variations of Hodge structures, apart
from the statement in Chapter 10 of some of his main results. In the same
vein, the work of Cattani-Kaplan-Schmid on several variables degenerations
is mostly absent. We only give the statement of the application of this theory
to Hodge loci (Theorem 10.15), the result about the Hodge conjecture alluded
to in the Historical Part.

The reader neither finds many applications to singularities. In our opinion
Kulikov’s monograph [Ku] fills in this gap rather adequately. For more re-
cent applications we should mention Hertling’s work, and the work of Douai-
Sabbah on Frobenius manifolds and tt⇤-structures [Hert03, D-S03, D-S04].

Mixed Hodge theory on Lawson homology is not treated because this falls
too far beyond the scope of this book. For the same reason non-abelian Hodge
theory is absent, as are characteristic p methods, especially motivic integra-
tion, although the motivic nearby and motivic vanishing cycles are introduced
(Remark 11.27).
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Basic Hodge Theory
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Compact Kähler Manifolds

We summarize classical Hodge theory for compact Kähler manifolds and derive some
important consequences. More precisely, in § 1.1.1 we recall Hodge’s Isomorphism
Theorem for compact oriented Riemannian manifolds, stating that in any De Rham-
cohomology class one can find a unique representative which is a harmonic form.
This powerful theorem makes it possible to check various identities among coho-
mology classes on the level of forms. By definition a Kähler manifold is a complex
hermitian manifold such that the associated metric form is closed and hence defines
a cohomology class. The existence of such metrics has deep consequences. In § 1.1.2
and § 1.2.2 we treat this in detail, the highlights being the Hodge Decomposition
Theorem and the Hard Lefschetz theorem. Here some facts about representation the-
ory of SL(2, R) are needed which, together with basic results needed in Chapt. 10,
are gathered in § 1.2.1.

1.1 Classical Hodge Theory

1.1.1 Harmonic Theory

Let X be a compact n-dimensional Riemannian manifold equipped with a
Riemannian metric g. This is equivalent to giving an inner product on the
tangent bundle T (X). So g induces inner products on the cotangent bundle
and on its exterior product, the bundles of m-forms

Em

X
:=⇤mT (X)_.

We denote the induced metrics also by g. We normalize these metrics starting
from an orthonormal frame {e1, . . . , en} for the cotangent bundle. We then
declare that the vectors {ei1

^ei2
^· · ·^eim} form an orthonormal frame for Em

X

where the indices range over all strictly increasing m-tuples {i1, i2, · · · , im}
with ik 2 {1, . . . ,m}, k = 1, . . . , n.

Assume that X can be oriented, i.e. that there is a global n-form which
nowhere vanishes. If we choose the local frames for E1

X
such that they are
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compatible with the orientation, a canonical choice for the Riemannian volume
form is given by

volg = e1 ^ e2 · · · ^ en.

The Hodge ⇤-operators ⇤mT_
x
X

⇤�! ⇤n�mT_
x
X defined by

↵ ^ ⇤� = g(↵,�)[volg]x 8↵,� 2 ⇤mT_
x
X (I–1)

induce linear operators on Em

X
. The spaces of global di↵erential forms on X,

the De Rham spaces
Em

DR
(X) :=� (X, Em

X
)

also carry (global) inner products given by

(↵,�) :=
Z

X

g(↵,�) volg =
Z

X

↵ ^ ⇤�, ↵, � 2 Em

DR
(X).

The de Rham groups are defined by

Hk

DR
(X) :=Hk (E•

DR
(X), d) .

The operator d⇤ = (�1)nm+1⇤d⇤ can be shown to be an adjoint of the operator
d with respect to this inner product, i.e.,

(d↵,�) = (↵, d⇤�), ↵, � 2 Em

DR
(X).

Its associated Laplacian is 4d = dd⇤ + d⇤d. The m-forms that satisfy the
Laplace equation 4d = 0 are called d-harmonic and denoted

Harm(X) = {↵ 2 � (X, Em

X
) | 4d↵ = 0}.

The next result, originally proven by Hodge (for a modern proof see e.g.
[Dem, § 4] states that any De Rham group, which in fact is a real vector space
of equivalence classes of forms, can be replaced by the corresponding vector
space of harmonic forms:

Theorem 1.1 (Hodge’s isomorphism theorem). Let X be a compact dif-
ferentiable manifold equipped with a Riemannian metric. Then we have:

1) dim Harm(X) <1.
2) Let

H : Em

DR
(X)! Harm(X)

be the orthogonal projection onto the harmonic forms. There is an orthog-
onal direct sum decomposition

Em

DR
(X) = Harm(X)� dEm�1

DR
(X)� d⇤Em+1

DR
(X)

and H induces an isomorphism

Hm

DR
(X)

⇠=�! Harm(X).
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There is a useful additional statement concerning holonomy groups. To explain
what these are we start from the Levi-Civita connection, the unique metric
connection without torsion. It defines parallel displacement along curves, and
for a closed curve based at x 2 X it defines an isometry of the tangent
space TxX. These isometries by definition generate the holonomy group
Gx ⇢ O(TxX). For a connected X the holonomy groups Gx are abstractly
isomorphic, say to G ⇢ O(T ), for some vector space T isomorphic to Tx. The
basic result we need is [Ch]:

Theorem 1.2 (Chern’s theorem). Let (X, g) be a compact connected Rie-
mannian manifold of dimension n. Let A 2 End(⇤T_) an operator which on
each fiber commutes with the holonomy representation. Then A through its
action on EDRX commutes with the Laplacian � and hence preserves the
subspace of harmonic forms.

Next, we assume that X is a complex manifold equipped with a hermitian
metric h. Identifying T (X) with the underlying real bundle T (X)hol, the real
part Re(h) of h is a Riemannian metric, while

!h := Im(h)

is a real valued skew-form. The almost complex structure J on T (X) preserves
this form, which means that it is of type (1, 1). To fix the normalization, if in
local coordinates h is given by h =

P
j,k

hjkdzj ⌦ dz̄k, the associated form is
given by

!h =
i
2

X

j,k

hjkdzj ^ dz̄k.

As before, the metric h induces point-wise metrics on the bundles of complex-
valued smooth di↵erential forms as well as on each of the bundles of complex-
valued (p, q)-forms Ep,q

X
. The di↵erential d : Em

X
(C) ! Em+1

X
(C) splits as

d = @ + @̄ with @ : Ep,q

X
! Ep+1,q

X
, @̄ : Ep,q

X
! Ep,q+1

X
.

The volume form associated to h defines then global inner products, the
Hodge inner products on the spaces of complex valued smooth forms as
well as on the spaces of smooth (p, q)-forms. With respect to these metrics we
have an orthogonal splitting ([Wells, Chapt. V, Prop. 2.2])

� (Em

X
(C)) =

M

p+q=m

� (Ep,q

X
).

The fibre-wise conjugate-linear operator ⇤̄ : Ep,q

X

⇠�! En�q,n�p

X
, defined by

⇤̄(↵) = ⇤↵̄ extends to global (p, q)-forms. We also may consider forms with co-
e�cients in a holomorphic vector bundle E equipped with a hermitian metric
hE . The bundle of di↵erentiable E-valued forms of type (p, q) by definition is
the bundle

Ep,q

X
(E) = Ep,q

X
⌦ E.
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The operator @E : � (Ep,q

X
(E)) ! � (Ep,q+1

X
(E)) given by @E(↵ ⌦ s) = @↵ ⌦ s

is well-defined and since @E
�@E = 0 we obtain a complex � (Ep,•

X
(E)).

The Hodge metric on the space of E-valued m-forms is obtained as follows.
First choose a conjugate linear isomorphism ⌧ : E ! E_ and define

⇤̄E : Ep,q

X
(E)! En�q,n�p

X
(E_)

by ⇤̄E(↵ ⌦ e) = ⇤̄↵ ⌦ ⌧(e). Then the global Hodge inner product on
� (Ep,q

X
(E)) is given by

(↵,�) =
Z

X

↵ ^ ⇤̄E�, ↵, � 2 � (Ep,q

X
(E)). (I–2)

With respect to this metric, one defines the (formal) adjoint @
⇤

E
of @E and

the Laplacian 4
@E

:= @E@
⇤

E
+ @

⇤

E
@E with respect to which one computes the

harmonic forms Harp,q(E). We can now state:

Theorem 1.3 (Hodge’s isomorphism theorem, second version). Let
X be a compact complex manifold and E be a holomorphic vector bundle.
Suppose that both TX and E are equipped with a hermitian metric. We have:

1) dim Harp,q(E) <1.
2) Let

H : � (X, Ep,q

X
(E))! Harp,q(E)

be the orthogonal projection onto the harmonic forms. There is a direct sum
decomposition

� (Ep,q

X
(E)) = Harp,q(E)� @E� (Ep,q�1

X
(E))� @

⇤

E
� (Ep,q+1

X
(E))

and H induces an isomorphism

Hp,q

@
(E)

⇠=�! Harp,q(E)

where

Hp,q

@
(E) :=

@-closed (p, q)-forms with values in E

@Ep,q�1(E)
.

The operator ⇤̄E commutes with the Laplacian 4
@

as acting on Ep,q

X
(E)

and hence harmonic (p, q)-forms with values in E go to harmonic (n�p, n�q)-
forms with values in E_. In particular Harp,q(E) and Harn�q,n�p(E_) are
conjugate-linearly isomorphic. For reference we state the following classical
consequence.

Corollary 1.4 (Serre duality). The operator ⇤̄E defines an isomorphism

Hq(X,⌦p

X
(E))

⇠=�! Hn�q(X, ⌦n�p

X
(E_))_.
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1.1.2 The Hodge Decomposition

A hermitian metric h on a complex manifold is called Kähler if the associated
(1, 1)-form !h is closed. Such a form is called a Kähler form. Any manifold
equipped with a Kähler metric is called a Kähler manifold. It is well known
that h is Kähler if and only if there exist local coordinates in which h is the
standard euclidean metric up to second order.

Examples 1.5. 1) Any hermitian metric on a Riemann surface is Kähler.
2) The Fubini-Study metric on P

n is Kähler. We recall the definition. In-
troduce coordinates (Z0, . . . , Zn) on C

n+1 and for Z 2 C
n+1 put ||Z|| =P

n

i=0
|Zi|2. This defines an C

⇤-invariant (1, 1) form on C
n+1, the Fubini-

Study form

!FS :=
i

2⇡
@@ log ||Z||2

and one considers it as a form on P
n. The constant is chosen in such a way

that the class of !FS is the fundamental cohomology class of a hyperplane.
So the Kähler class is integral in this case.
3) Any submanifold of a Kähler manifold is Kähler. Indeed, the restriction
of the Kähler form restricted to the submanifold is a Kähler form on this
submanifold. An important special case is formed by the projective mani-
folds. For these, the restriction of the Fubini-Study form defines an integral
Kähler class. More generally, we say that we have a Hodge metric when-
ever the Kähler class is rational. Kodaira showed (see e.g. [Wells, Chapter
VI]) that a Hodge metric exists if and only if the manifold is projective.

For a complex manifold X the (real) tangent space TxX, x 2 X has
a complex structure J 2 End(TxX). If in addition X is hermitian, it can
be shown [Helg, Ch. VIII. §2] that the metric is Kähler if and only if J
is parallel with respect to the Levi-Civita connexion. The almost complex
structure extends C-linearly to the complex tangent bundle and since J is
parallel the splitting TxX_⌦C = (T 1,0

x
X)_� (T 0,1

x
X)_ into ±i-eigenspaces is

preserved by holonomy. We let

⇤p,q(TxX)_ :=⇤p(T 1,0

x
X)_ ⌦ ⇤q(T 0,1

x
X)_

be the vector space of (p, q)-covectors at x 2 X. On these spaces J acts
as multiplication by ip�q; they are likewise preserved by holonomy. Another
consequence of J being parallel is that the hermitian structure on the tangent
space TxX is preserved by the holonomy group Gx:

Lemma 1.6. Let (X,h) be a Kähler manifold. Then the holonomy group Gx

is contained in U(TxX) ' U(n), n = dimC X.

At this point we recall that the hermitian metric on the tangent space induces
hermitian metrics on the associated vector spaces of covectors; the spaces of
covectors of di↵erent type are mutually orthogonal. The value at x of the
Kähler form is an invariant covector. Hence:



16 1 Compact Kähler Manifolds

Lemma 1.7. The group U(n) acts on each of the spaces ⇤p,q(TxX)_. The
operator “multiplication with the Kähler form” commutes with this action.

A central result is the following theorem.

Theorem 1.8 (Hodge decomposition theorem). Let X be a compact
Kähler manifold. Let Hp,q(X) be the space of cohomology classes whose har-
monic representative is of type (p, q). There is a direct sum decomposition

Hm

DR
(X)⌦ C =

M

p+q=m

Hp,q(X).

Moreover Hp,q(X) = Hq,p(X).

Proof. Since the holonomy group preserves the (p, q)-covectors, the projec-
tions ⇤p+q(TxX ⌦ C)_ ! ⇤p,q(TxX)_ commute with holonomy and hence,
by Chern’s theorem 1.2, the (p, q)-components of a complex harmonic form
remain harmonic. This proves the theorem. ut

The Hodge decomposition is in fact independent of the chosen Kähler
metric. This is seen by comparing it with the Bott-Chern cohomology groups

Hp,q

BC
(X) :=

d-closed forms of type (p, q)
@@�Ep�1,q�1

X

.

We have ([Dem, Lemma 8.6])

Lemma 1.9 (@@-lemma). For a d-closed (p, q)-form ↵ the following state-
ments are equivalent:

a) ↵ = d� for some p + q � 1-form �;
b) ↵ = @�00 for some (p, q � 1)-form �00;
c) ↵ = @@� for some (p� 1, q � 1)-form �;
d) ↵ is orthogonal to the harmonic (p, q)-forms.

Corollary 1.10. The natural morphism

Hp,q

BC
(X)! Hp+q

DR
(X)⌦ C

which sends the class of a d-closed (p, q)-form to its De Rham class is injective
with image Hp,q(X). Therefore the latter subspace is independent of the Kähler
metric: it consists precisely of the De Rham classes representable by a closed
form of type (p, q).

Proof. The injectivity follows from the equivalence b),c). Any class whose
harmonic representative ↵ is of type (p, q) is the image of the Bott-Chern class
of ↵. ut

Corollary 1.11. Let f : X ! Y be a holomorphic map between compact
Kähler manifolds. Then f⇤ : Hm

DR
(Y ) ⌦ C ! Hm

DR
(X) ⌦ C maps Hp,q(Y ) to

Hp,q(X) (p + q = m).
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1.1.3 Hodge Structures in Cohomology and Homology

We now introduce the following fundamental concepts.

Definition 1.12. A Hodge structure of weight k on a Z-module VZ of
finite rank is a direct sum decomposition

VC := VZ ⌦Z C =
M

p+q=k

V p,q with V p,q = V q,p.

The numbers
hp,q(V ) :=dim V p,q

are the Hodge numbers of the Hodge structure.
Let VZ and WZ be two Hodge structures of weight k. A morphism of

Hodge structures f : VZ !WZ is a homomorphism of Z-modules such that
its complexification fC preserves types: fC : V p,q !W p,q.

With these definitions at hand, here is a concise reformulation of the pre-
ceding results:

Corollary 1.13. Let X be a compact Kähler manifold. Then the integral co-
homology group Hk(X) carries a weight k Hodge structure. If f : X ! Y is
a holomorphic map between compact Kähler manifolds, then f⇤ : Hk(Y ) !
Hk(X) is a morphism of Hodge structures.

Proof. We use the De Rham isomorphism (B–17) to identify Hk(X; C) =
Hk(X)⌦C with Hm

DR
(X)⌦C and then invoke Theorem 1.8. The last assertion

follows by functoriality and Cor. 1.11 . ut

Other basic examples of Hodge structures are the Hodge structures of
Tate Z(m):

Z(m) = [2⇡i]mZ ⇢ C, Z(m)⌦ C = [Z(m)⌦ C]�m,�m. (I–3)

If we have any Hodge structure VZ of weight k, the Tate twist V (m) is a
Hodge structure of weight k�2m. It has V ⌦ (2⇡i)m as underlying Z-module,
while V (m)p,q = V p�m.q�m.

Fundamental examples are provided by the fundamental classes of subva-
rieties as we now explain. Consider a subvariety Y of a compact complex man-
ifold X of codimension c. Integration of smooth forms of degree 2(dim X � c)
over Y defines the integration current. The class of this current in cohomology
with complex coe�cients in fact comes from the topologically defined funda-
mental cohomology class cl(Y ) 2 H2c(X) (see Remark B.31). Let y 2 Y be
a smooth point and choose coordinates such that Y is locally given by the
vanishing of c of the coordinates. The restriction to Y of a (p, q)-form with
p + q = 2n� 2c necessarily vanishes around y if either p > n� c or q > n� c,
since such a form involves di↵erentials of more than n � c coordinates (or
conjugates thereof). We conclude



18 1 Compact Kähler Manifolds

Proposition 1.14. The fundamental cohomology class cl(Y ) 2 H2c(X) of a
codimension c subvariety Y of a compact complex manifold X has pure type
(c, c). In particular, if X is connected, the twisted trace map (see (B–38) in
Appendix B.2.8 for the untwisted version) is an isomorphism

trX : H2n(X) '�! Z(�n)

[↵] 7!


1
2⇡i

�n Z

X

↵.

An element
P

niYi of the free group Zk(X) on k-dimensional subvarieties of X
is called an algebraic k-cycle. Conventionally, the codimension is used as an
upper-index so that Zc(X) = Zn�c(X) The assignment

P
niYi 7!

P
i
ni cl(Yi)

defines the cycle class map

cl : Zc(X)! H2c(X).

An element in the image is called an algebraic class. If X is projective and
c = 1, the algebraic classes are exactly the integral (1, 1)-classes (Lefschetz’
theorem on (1, 1)-classes).

Remark 1.15. It is not true in general that all integral classes of pure type (c, c)
are in the image of the class map. In fact, for c > 1, using a construction of
Serre, Atiyah and Hirzebruch [At-Hir] have given examples of classes of finite
order in H2c(X; Z) which are not algebraic. Going over to rational classes, we
put

H2c

Hdg
(X) :=Hc,c(X) \ Im{H2c(X; Q)! H2c(X; C)}. (I–4)

The following celebrated conjecture still is open.

Conjecture 1.16 (Hodge conjecture). Let X be a smooth projective va-
riety. Every (c, c)-class with rational coe�cients is algebraic, i.e. every class
in H2c

Hdg
(X) is a rational combination of fundamental cohomology classes of

subvarieties of X.

Remark. For a compact Kähler manifold X the Hodge conjecture fails, even
if we replace the definition of an algebraic class by a rational combination of
Chern classes of holomorphic vector bundles. See [Vois02].

Using the isomorphism

Hk(X, C)
⇠=�! Hom(Hk(X), C)

we define a Hodge decomposition on Hk(X, C):

Definition 1.17.

Hk(X, C)�p,�q = {� : Hk(X, C)!C | �(Hr,s 6

This endows Hk(X) with a Hodge structure of weight �k. If f : X ! Y is
a holomorphic map between compact Kähler manifolds, the induced maps in
homology preserve this Hodge structure.

(X))= 0 whenever (r, s) = (p, q)}.

Hau ( πl),u Gl 1路

U→ V' av",

sus"i
vaOnijihgpl

-
O
跟
섺W )☆OBK
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Note that we get a Hodge structure of weight k + ` on Hk(X) ⌦ H`(X)
by declaring that Hp,q(X) ⌦Hr,s(X) has type (p + r, q + s). It follows that
the cup product map

Hk(X)⌦H`(X)! Hk+`(X)

is a morphism of Hodge structures. Similarly, we get a Hodge structure of
weight k � ` on Hk(X)⌦H`(X) and the cap product

Hk(X)⌦H`(X)! H`�k(X)

is a morphism of Hodge structures.
Proposition 1.18. The Poincaré isomorphism (B.24)

DX : H2n�k(X)(n)
⇠=�! Hk(X)

is an isomorphism of Hodge structures.

Proof. The map DX is cap-product with the fundamental class in homology,
which has type (�n,�n), i.e. it factors as

H2n�k(X)⌦ Z(n)
⇠=�! H2n�k(X)⌦H2n(X) \�! Hk(X)

which is the composition of two morphisms of Hodge structures. ut

Remark. One could have used Poincaré duality to put a Hodge structure on
homology. One the one hand this seems more natural, since one can work
directly with integral structures. On the other hand, one needs a Tate twist,
and, more seriously, for singular varieties there is no Poincaré-duality whereas
the approach we have chosen remains valid. See also § 6.3.1.

Recall (B–41) that Gysin maps are induced by the maps in homology after
applying the Poincaré duality isomorphisms so that the foregoing implies:

Lemma 1.19. Let f : X ! Y be a holomorphic map between compact
Kähler manifolds. Let n = dim X and m = dim Y . The twisted Gysin map
f! : H�k+2n(X)(n)! H�k+2m(Y )(m), k = 0, . . . , 2n is of pure type (0, 0).

As a side remark, the Gysin map in real cohomology can also be defined using
the formulas (B–40). This yields:

Addendum 1.20. The formula
✓

1
2⇡i

◆n Z

X

a [ f⇤b =
✓

1
2⇡i

◆m Z

Y

f!a [ b, (I–5)

a 2 H�k+2n

DR
(X)(n), b 2 Hk

DR
(Y )

determines the twisted Gysin map uniquely (up to torsion) in terms of coho-
mology.

o → f
'

0
,
,a ;s-y;"

R <>=aR的
θ==舞

R 涂”
RC京섺

↓

n
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1.2 The Lefschetz Decomposition

1.2.1 Representation Theory of SL(2, R)

A basis for the Lie algebra sl(2, R) is 1

` =
✓

0 0
1 0

◆
, � =

✓
0 1
0 0

◆
, b =

✓
�1 0
0 1

◆
.

The commutators are given by

[`, �] = b, [`, b] = �2`, [�, b] = 2�.

To give a representation of sl(2, R) in some real vector space V we need to have
three linear maps L, ⇤, B of V which satisfy the same commutator relations.
This can be elegantly be rephrased as follows.

Lemma 1.21. Let V =
L

k2Z
V k be a finite dimensional graded real vector

space. Let L be a degree 2 endomorphism, ⇤ a degree �2 endomorphism such
that V k is an eigenspace for B :=[L, ⇤] with eigenvalue k. Then there is a
unique Lie-algebra morphism ⇢ : sl(2, R)! EndV for which ⇢(`) = L, ⇢(�) =
⇤, ⇢(b) = [L, ⇤].

We need a few more facts about representations of SL(2, R) and its Lie-
algebra sl(2, R). The standard representation ⇢m of SL(2, R) is defined to
be that of the vector space Pm of homogeneous polynomials of degree m
with g acting as P 7! P �g�1. It is irreducible. If X 2 sl(2, R), we have

d⇢m(X)P =
d

dt
(P � exp(�tX))

����
t=0

. This gives an irreducible Lie-algebra rep-

resentation. Explicitly:
⇢

d⇢m(`) = �y@x, d⇢m(�) = �x@y,
d⇢m(b)xaym�a = (m� 2a)xaym�a.

�
(I–6)

Since SL(2, R) is a connected Lie group the standard representation is the
unique representation of SL(2, R) which gives the Lie-algebra representation
(I–6).

Let ⇢ : sl(2, R)! EndV be a real representation and define

L := ⇢(`), ⇤ := ⇢(�), B :=[L, ⇤]. (I–7)

The action of ⇤ gives rise to the primitive subspace:

Vprim := Ker⇤.

For the standard representation V = Pm, the primitive space is the 1-
dimensional space V �m = Rxm, the eigenspace for B with eigenvalue �m.
Applying successive powers of L we get all of Pm. In fact
1 In most reference books, e.g. [Wells] the ordered basis {�, `, [�, `]} is used.
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La(xm) = (�1)a
m!
a!

xm�aya (I–8)

is an eigenvector for B with eigenvalue 2a �m. Also, for all r � 0 the map
Lr sends V �r isomorphically onto V r.

Any representation of SL(2, C) is completely reducible. This is well known.
See for instance [Wells, Chap. V, Coroll. 3.3]. This remains true for real repre-
sentations of SL(2, R). We show this below (Corollary 1.24) and this explains
why the properties we just discussed for the standard representation of sl(2, R)
hold in general. We turn this around by first proving them:

Lemma 1.22. Let V be a finite dimensional representation of sl(2, R). We
use the notation (I–7). Moreover we let V µ be the generalized eigenspace for
B with eigenvalue µ. The following assertions hold:

a) L and ⇤ are nilpotent and B is diagonalisable; V splits as a direct
sum V =

L
µ

V µ of eigenspaces for B and LV µ ⇢ V µ+2 and ⇤V µ ⇢
V µ�2.
b) If V 6= 0, at least one eigenspace space V µ for B contains primitive
vectors.
c) Let w 2 Vprim a primitive eigenvector for B with eigenvalue µ. Then
µ is a non-negative integer. We have

⇤(Lkw) = k(�µ� k + 1)Lk�1w. (I–9)

If m is chosen such that Lmw 6= 0, but Lm+1 = 0, then µ = �m and
the subspace of V spanned by the Lkw is an irreducible sl(2, R)-module
isomorphic to Pm.
d) Setting

V µ

prim
= Vprim \ V µ,

there is a direct sum decomposition Vprim =
L

m2N
V �m

prim
. We have

⇢
Lr : V �m

prim
,! V �m+2r, r  m

Lr |V �m

prim
= 0, r > m.

e) We have primitive decompositions

V =
M

r2N

LrVprim,

V µ =
M

r2N,r�µ

Lr

⇣
V µ�2r

prim

⌘

and Lr maps V µ�2r

prim
bijectively onto its image. In fact,

V =
M

m2N

⇣
V �m

prim
� · · ·� LmV �m

prim

⌘

=
M

m2N

Wm ⌦ V �m

prim
,
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with Wm isomorphic to the standard representation Pm and

Lm : V �m ⇠�! V m.

Proof. a) The Lie-algebra homomorphisms ad(`) and ad(�) are obviously
nilpotent, while ad(b) is semi-simple. It then follows from general theory of
representations of semi-simple Lie-algebras (such as sl(2, R)) that L and ⇤
are nilpotent, while B is semi-simple. See for instance [Se65, Theorem 5.7]. It
follows that V µ is an eigenspace for B so that the direct sum decomposition
follows. Since

BLv = LBv + [B, L]v = L(µv) + 2Lv = (µ + 2)Lv,

B⇤v = ⇤Bv + [B, ⇤]v = ⇤(µv)� 2⇤v = (µ� 2)⇤v,

the map L sends V µ to V µ+2 and ⇤ sends V µ to V µ�2.
b) Suppose that v 2 V µ is a non-zero vector. Since there cannot be an infinity
of eigenvectors with di↵erent eigenvalues for B, there must be a finite string
of vectors v, ⇤v, . . . , ⇤kv 6= 0, ⇤k+1v = 0 so that ⇤kv is primitive.
c) Set wk = Lkw; then by a) we have Bwk = (µ + 2k)wk while by definition
Lwk = wk+1. Hence

⇤wk = ⇤Lkw = Lk⇤w �
X

0jk�1

Lk�j�1[L, ⇤]Ljw

= 0�
X

Lk�j�1BLjw = �
X

0jk�1

(µ + 2j)Lk�1w

= k(�µ� k + 1)wk�1.

Applying this for k = m + 1 (so that wm+1 = 0), one sees that µ = �m  0.
Finally, lemma 1.21 implies that the real vector space W spanned by the wk

defines a real representation isomorphic to Pm.
d) The relation [B,⇤] = �2⇤ shows that Vprim is preserved by B; the asserted
direct sum decomposition follows from this and assertion a). Using c) we easily
calculate that ⇤s�Lr acts as multiplication by (s!)r(r � 1) · · · (r � s + 1) on
V �r

prim
. The assertions bout Lr then follow.

e) Let x 2 V r and suppose that ⇤s+1x = 0. Then y = ⇤sx 2 V �r�2s

prim
and

from ⇤s�Lsy = (s!)y we deduce that x0 = x� (1/s!)Lsy belongs to the kernel
of ⇤s|V �r. Continuing the argument with x0 we inductively find an expression

x = x0 + Lx1 + Lx2 + · · ·+ Lsxs, xj 2 V r�2j

prim
.

This expression is unique: if x = 0 and j is the largest integer for which
Ljxj 6= 0, then, by d) j � r and if we apply Lj�r to both sides, d) also implies
0 = L2j�rxj and hence xj = 0 contrary to our assumption. This shows that
we have a primitive direct sum decomposition of V µ. The assertion of the
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weights follow since primitive weight vectors have negative weights and then
the assertion about L is a consequence of d). The last assertion of c) implies
the last assertion of e). ut

Corollary 1.23. Let 0 6= x 2 V µ. Then x is primitive if and only if both
µ  0 and Lµ+1x = 0.

Corollary 1.24. Every finite dimensional real representation V of sl(2, R)
can be written as a direct sum

L
m2N

V�m ⌦ V �m

prim
with V�m isomorphic to

Pm. In particular, V is completely reducible.

Proof. Everything follows from the above lemma, except for complete re-
ducibility. This is however a direct consequence since any real sub representa-
tion U gives a real subspace U�m

prim
⇢ V �m

prim
and we can choose any complement

W 0 so that, setting W = W 0�· · ·�LmW 0 we get an sl(2, R) invariant splitting
V = U �W . ut

Corollary 1.25. Let V =
L

j2Z
V j be a graded finite dimensional real vector

space and let L : V ! V be an endomorphism of degree 2 such that

Lj : V �j
⇠=�! V j

for all j 2 Z. Then there exists a unique representation ⇢ of SL(2, R) on V
such that d⇢(`) = L and d⇢(b)(v) = jv for all v 2 V j.

Proof. Define B 2 End(V ) as multiplication by j on V j . First extend ` 7!
L, b 7! B to a representation of sl(2, R) on V . This can be done in a unique
way. Indeed, let V �j

0
= Ker

⇥
Lj+1 : V �j ! V j+2

⇤
. If w 2 V �j , there is a

unique u 2 V �j�2 such that Lj+2u = Lj+1w. Then Lu � w 2 V �j

0
showing

that there is a direct sum decomposition V �j = V �j

0
� Im(L : V�j�2 ! V�j).

By induction it follows that there is a decomposition

V t =
M

r�0

LrV t�2r

0
.

It su�ces to define ⇤ = d⇢(�) on each of the factors. The idea is that v 2 V �j

0

is primitive so that ⇤ is zero on this space. Copying (I–9) for v 2 V �j

0
and

k = 0, 1, . . . , j we set

⇤(Lkv) = k(j � k + 1)Lk�1v.

Since this formula is dictated by the commutation rules, the result must be
a representation of sl(2, R). Then we use again that any finite dimensional
irreducible representation of sl(2, R) can be lifted to SL(2, R) in a unique
way. ut
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For later applications (§ 11.3.2) we need to know the action of the involu-
tions

w =
✓

0 1
�1 0

◆
W = ⇢(w)

on primitive cohomology. We compute this using Lemma 1.22:

Corollary 1.26. For a primitive vector v 2 V �r we have

W (Ljv) = (�1)j
j!

(r � j)!
Lr�jv, j = 0, 1, . . . , r.

Proof. We may assume that V is irreducible and hence isomorphic to Pr. We
saw that xr generates the space of primitive vectors and the action of L is
given by formula (I–8). Hence, since then W (xr�jyj) = (�1)jyr�jxj we have

W (Ljxr) = (�1)jW


r!
j!

xr�jyj

�

= (�1)r
r!

(r � j)!
xjyr�j

= (�1)j
j!

(r � j)!
Lr�jxr.ut

1.2.2 Primitive Cohomology

Let X be an n-dimensional complex manifold equipped with a hermitian met-
ric h. Let L denote the operator defined by multiplication against the Kähler
form

L(↵) = !h ^ ↵.

and put
⇤ = L⇤ = ⇤̄�1L⇤̄.

These two operators are real and act pointwise on covectors and we say that
u 2 ⇤⇤(TxX)_ is primitive if ⇤u = 0. Since L commutes with the unitary
action on covectors (Lemma 1.7), also ⇤ commutes with this action. Together
they define a representation of sl(2, R). This follows from Lemma 1.22 and
the formula

[L, ⇤]u = (m� n)u, u 2 ⇤mTxX_ (I–10)

proven for instance in [Wells, Chap. V §1]. This entire represention thus com-
mutes with the unitary action. Since the holonomy group is contained in the
unitary group (Lemma 1.6), Chern’s theorem 1.2 then implies:

Lemma 1.27. The action of L and ⇤ on EDRX induces an sl(2, R)-representation
on harmonic forms. The first Hodge isomorphism allows to transport this rep-
resentation to cohomology.
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Now note that the space of complex k-covectors forms an sl(2, C)-representation
space which by (I–10) has weight k � n. So, using the notation

n+ = max(n, 0) (I–11)

Lemma 1.22 and Corollary 1.23 translate as:

Lemma 1.28. 1) There are no non-zero primitive k-covectors when k > n
and for k  n a primitive k-covector is annihilated by Lr whenever r >
n� k.
2) Any k-covector u can be written uniquely as a sum u =

P
Lruk�2r,

where uk�2r is a primitive k � 2r-covector and we sum over non-negative
r � k � n. Note that this is compatible with the decomposition into types.
Hence we have direct sum decompositions

⇤k(TxX ⌦ C)_ =
M

r�(k�n)+

Lr(⇤2n�kTxX ⌦ C)_
prim

⇤p,q(TxX)_ =
M

r�(p+q�n)+

Lr(⇤p,qTxX)_
prim

3) Suppose that k  n. Then we have

A k-covector u is primitive () Ln�k+1u = 0.

For all integers k  n and (p, q) with p + q  n we have Lefschetz-

isomorphisms

Ln�k : ⇤k(TxX ⌦ C)_
⇠=�! ⇤2n�k(TxX ⌦ C)_

Ln�p�q : ⇤p,q(TxX)_
⇠=�! ⇤n�p,n�q(TxX)_.

In particular Lr is injective on k-forms as long as r  n� k.

Using the characterization (3) of primitive covectors, one can easily give ex-
amples of such covectors:

Example 1.29. The (p, q)-covector dz1 ^ · · · ^ dzp ^ dz̄p+1 ^ · · · ^ dz̄p+q is
primitive.

We next define a primitive form as a form which at each point is a primitive
covector. By Lemma 1.27 there is a primitive decomposition for harmonic
forms as well:

Harp,q(X) =
M

r�(p+q�n)+

Lr
�
Harp�r,q�r

�
prim

(X).

Via the complexification of the first Hodge isomorphism this transports to
cohomology. To make this explicit, define primitive cohomology as
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Hm

prim
(X) = Ker

�
⇤ : Hm(X; C)! Hn�2(X; C)

�

= Ker
�
Ln�m+1 : Hm(X; C)! H2n�m+2(X; C)

�
, if m  n.

Here we define the operator ⇤ on cohomology through the action on the
harmonic forms, i.e. we use the harmonic projection to identify cohomology
and harmonic forms. The last equality follows formally from Corollary 1.28,
part 3) and shows that this action does not depend on the metric. Likewise,
define the primitive (p, q)-spaces by

Hp,q

prim
(X) = Ker

�
⇤ : Hp,q(X)! Hp�1,q�1(X)

�

= Ker
�
Ln�p�q+1 : Hp,q(X; C)! Hn�q+1,n�p+1(X; C)

�

(for p + q  n).

Then there is an induced Hodge decomposition on primitive cohomology

Hm

prim
(X) =

M

p+q=m

Hp,q

prim
(X)

and, using the notation (I–11), we have Lefschetz-decompositions

Hm(X; C) =
M

r�(m�n)+

LrHm�2r

prim
(X; C) (I–12)

Hp,q(X) =
M

r�(p+q�n)+

LrHp�r,q�r

prim
(X).

Now we can apply Corollary 1.28 either directly or first to harmonic forms,
proving the

Theorem 1.30 (Hard Lefschetz theorem). For any Kähler manifold
(X,!), cup product with the Kähler class [!] induces isomorphisms

Ln�k : Hk(X; C)
⇠=�! H2n�k(X; C), k  n

Ln�(p+q) : Hp,q(X)
⇠=�! Hn�q,n�p(X), p + q  n.

In particular Lr is injective on k-cohomology as long as r  n� k.

Remark 1.31. It is quite formal that the first isomorphism (for all k) im-
plies the Lefschetz decomposition for cohomology. Indeed, we may assume
that the Lefschetz decomposition has been proven for all ranks < m and
we consider ↵ 2 Hm(X; C). There is a unique � 2 Hm�2(X; C) such that
Ln�m+1↵ = Ln�m+2� and ↵�L� is primitive. By induction there is a unique
decomposition � = �1 + L�2 + . . . with �r 2 Hm�2r

prim
(X). Now apply L to �,

and the decomposition follows. Uniqueness follows from the injectivity of Lr

on Hk(X; C) for r  n� k.

We have seen at the start of this section that the primitive covectors form
a U(n)-representation. They give in fact an irreducible representation:
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Lemma 1.32. The space of primitive covectors (⇤p,qTxX)_
prim

is an irre-
ducible U(n)-representation.

Proof. Example 1.29 shows that the space (⇤p,qTxX)_
prim

is non-trivial. Hence,
with m = min(p, q), there are at least m + 1 irreducible components in

(⇤p,qTxX)_ =
M

0rm

Lr(⇤p�r,q�rTxX_)prim.

It su�ces therefore to see that there are at most m + 1 irreducible U(n)-
components in the latter U(n)-module. It is well known that the irreducible
U(n)-modules are in bijection with the eigenvectors of the action of the diag-
onal matrices. But these all act di↵erently on the m + 1 covectors

Lr(dzn�p+r+1 ^ · · · ^ dzn ^ dz̄1 ^ · · · dz̄q�r).

Indeed, if ✏1, . . . , ✏n is the canonical basis for the characters of this diagonal
subgroup, the preceding vector has weight ✏1 · · ·+✏q�r�(✏n�p+r+1 + · · ·+✏n).
ut

The final major ingredients in classical Hodge theory are the Hodge-Riemann
bilinear relations. to formulate these, we use action on H⇤

DR
(X; C) induced by

the complex structure J 2 EndTxX_. This is the Weil-operator C which
explicitly is given by

C
��
Hp,q(X)

= ip�q. (I–13)

The Hard Lefschetz theorem leads directly to the Hodge-Riemann bilinear
relations:

Theorem 1.33 (Hodge Riemann bilinear relations). For k 2 Z put

"(k) :=(�1)
1

2
k(k�1). (I–14)

Let (X,!) be a Kähler manifold of dimension n. The Hodge-Riemann form

is the bilinear form

Q(↵,�) = "(k)
Z

X

↵ ^ � ^ !n�k [↵], [�] 2 Hk

DR
(X; C).

It is (�1)k-symmetric (symmetric for k even and skew-symmetric for k odd).
Using the Weil-operator C (I–13), the two Hodge-Riemann relations can

be written as
⇢

Q(Hp,q, Hr,s) = 0 if (r, s) 6= (q, p)
For u 2 Hp,q

prim
, ip�qQ(u, ū) = Q(Cu, ū) = (u, u) and hence > 0 if u 6= 0.

Here, the right hand side uses the global Hodge inner product (I–2).
If the (real) Kähler class [!] belongs to H2(X;R) for a subring R of R, the
Hodge-Riemann form can be evaluated on Hk(X;R) and takes values in R.
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Proof. The (�1)k-symmetry and the first bilinear relation is clear. So it re-
mains to prove the second relation which is clearly a consequence of

"(k)ip�q!n�k ^ ū = (n� k)!(⇤ū), (I–15)

valid for any primitive (p, q)-form u with p+ q = k. To prove this formula, we
use Lemma 1.32 so that we need to verify the equation only for a well-chosen
u, for example for u = dz1 ^ · · · ^ dzp ^ dz̄p+1 ^ · · · ^ dz̄p+q. Assume, as we
may, that the metric is the standard metric ! = i

P
n

k=1
dzk ^ dz̄k. We may

further assume that, if we let I and J run over all possible strictly increasing
multi-indices with |I| = p, |J | = q we obtain a unitary basis {dzI ^ dz̄J} for
⇤p,qTxX_. For any subset R ⇢ {1, . . . , n} with |R| = r we have

!r = (�2i)r
X

|R|=r

dzR ^ dz̄R

and since vol = "(n)(�i)ndz1 ^ · · ·^ dzn ^ dz̄1 ^ · · ·^ dz̄n, using formula (I–1)
we deduce (I–15). ut

1.3 Applications

As a first application, following [Hart75, proof of Theorem 6.1], we shall show
how the Hard Lefschetz Theorem implies Barth’s theorem [Barth].

Theorem 1.34 (Barth’s theorem). Let Y ⇢ P
N be a smooth subvariety

of dimension n. The inclusion induces isomorphisms

Hk(PN ; C)
⇠=�! Hk(Y ; C), 8k  2n�N.

Proof. By B.30 i!�i⇤ is multiplication with the fundamental class cl(X). Let
c be the codimension of Y . We have i!�i⇤ = a · Lc

X
, where a 6= 0 and LX

is the Kähler class on X. Similarly, i⇤�i! = a · Lc

Y
, where LY = i⇤LX is the

Lefschetz-operator on the cohomology of Y . So we get a commutative diagram

Hk(PN ; C) ����!
i
⇤

Hk(Y ; C)

a·L
c

???y

???y a·L
c
Y

Hk+2c(PN ; C) ����!
i
⇤

Hk+2c(Y ; C).

�
�
�

��⇡
i!

Given that c  dim Y � k, the Hard Lefschetz theorem for Y implies that
the second vertical arrow is injective. It follows that the oblique arrow i! is
injective. The first vertical arrow is injective (it is an isomorphism) and hence
the upper horizontal arrow is injective. To show that it is onto, one remarks
that, since i! is injective, it su�ces to remark that since Lc is an isomorphism,
it is, in particular, surjective. ut
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Remark 1.35. 1) Since the Kähler class is integral, the preceding proof also
works over Q.
2) The theorem implies the Weak Lefschetz Theorem: this is the case of a
hypersurface (N = n+1): the (complex) cohomology groups of a smooth n-
dimensional hypersurface in P

n+1 are the same as those of P
n+1, except the

middle one Hn(X; C). This theorem is a special case of Lefschetz’ Hyper-
plane Theorem (C.15) which is valid even with integral coe�cients (take
Y = P

n+1 and consider a degree d-hypersurface as a hyperplane via the
d-fold Veronese embedding).

As a second application of the Lefschetz decomposition we explain how to
deduce the degeneration of the Leray spectral sequence for smooth projective
morphisms.

Recall (see § A.3) that the Leray spectral sequence associated to a contin-
uous map f : X ! S between topological spaces converges to the cohomology
of X (with coe�cients in some ring R) and reads

Ep,q

2
= Hp(S, Rqf⇤RX

) =) Hp+q(X;R).

Cup product with a class h 2 H2(X;R) defines an action on the cohomology of
X and, by restriction, on the cohomology of any subset of X, in a way which is
compatible with inclusions. It follows that there are induced homomorphisms

(⇤)
k

[[h]k : Rm�kf⇤RX
! Rm+kf⇤RX

, k > 0

compatible with the action on the cohomology of the fibres of f .

Definition 1.36. Assume that X and S are di↵erentiable manifolds and that
the general fibre of f has dimension 2m. If for this m and all k � 0 (*)k is an
isomorphism, we say that the fibration f has the hard Lefschetz property
(with respect to the class h 2 H2(X;R)).

Examples 1.37. 1) Let X and S be smooth complex manifolds. A holomor-
phic map f : X ! S is projective if we can embed X into a locally
trivial fibre bundle P ! S with fibre a projective space, and such that the
following self evident diagram is commutative

X ,�����������!
j

P

S

�

�

� 

@

@

@R

f

Let us see what the hard Lefschetz property amounts to in the case of a
smooth projective family. This condition being local, we may assume that
P = P

N⇥S so that each fibre is naturally embedded in P
N . The hyperplane

class on P
N pull back first to a class on P

N ⇥ S (via projection) and then
to a class h 2 H2(X; Q) giving a rational Kähler class on each fibre.
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The stalk at s of the direct image sheaf Rmf⇤Q
X

is the cohomology group
Hm(Xs; Q) of the fibre Xs of f at s. Since f is locally di↵erentiably trivial
(Theorem C.10), the direct image sheaves Rmf⇤Q

X
are locally constant.

The hard Lefschetz property can thus be verified fibre by fibre. On a fibre
this assertion is exactly the hard Lefschetz theorem.
2) The same remarks can be applied in the Kähler setting for cohomology
with real coe�cients, provided we assume that there is a closed 2-form on
X which restricts to a Kähler form on each fibre. In this case we say that
f is a smooth Kähler family.
3) A fibration X ! C, with X Kähler and C a curve sometimes has the hard
Lefschetz property. See Lemma C.13 for conditions which guarantee this.
As an application, by Cor. C.22 most Lefschetz pencils have this property.

Proposition 1.38. If f satisfies the hard Lefschetz property, the Leray spec-
tral sequence for f degenerates at the E2-term. In particular this holds for
smooth projective morphisms. It follows also that the restriction maps

Hm(X;R)! E0,m = H0(S, Rmf⇤R)

are surjective.

Proof. We have seen (see Remark 1.31) that the Lefschetz property implies
the Lefschetz decomposition. This argument being formal, we introduce

(Rm�kf⇤R)prim = Ker{Rm�kf⇤R! Rm+k+2f⇤R}

and then we have decompositions

Rmf⇤R =
M

r�(m�n)+

hr(Rm�2rf⇤R)prim.

The class h acts also on the terms of the Leray spectral sequence, and we
define

primEp,m�k

r
= Ker{hk+1 : Ep,m�k

r
! Ep,m+k+2

r
}.

Now by induction we assume that d2 = d3 = · · · = dr�1 = 0 so that E2 = Er

and since Ep,m�k

2
= Hp(S, Rm�kf⇤R), the preceding decompositions induce

a direct decomposition of the E2-terms into isomorphic images of primitive
pieces. It su�ces to show that dr = 0 on each primitive piece. We have a
commutative diagram

primEp,m�k

r

dr��! Ep+r,m�k�r+1

r??yh
k+1

=0

??yh
k+1

Ep,m+k+2

r

dr��! Ep+r,m+k�r+3

r
.

The vertical arrow on the right is an injection: the Lefschetz property implies
that there is an isomorphism
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hk+r�1 : Ep+r,m�k�r+1

r
= Hp+r(S, Rm�(k+r�1)f⇤R) �!

Hp+r(S, Rm+k+r�1f⇤R) = Ep+r,m+k+r�1

r

and hence hk+1 is injective, since r � 2. The commutativity of the diagram
implies that dr = 0.

The final assertion follows from the fact that the restriction map in this
case is the natural surjective map

Hm(X;R) ⇣ E0,m

1
⇠= E0,m

2
ut

Remark 1.39. 1) This Proposition applies to smooth Kähler families over a
base of arbitrary dimension. In [Del68] it is shown that, more generally,
the Leray spectral sequence degenerates if f : X ! S is a proper smooth
morphism between smooth algebraic varieties.
2) Similar arguments (loc. cit) can be used to show that we have a decom-
position

Rf⇤Q
X
'

M

q

Rqf⇤Q
X

[�q] (I–16)

in the derived category of sheaves of Q-vector spaces on S. This statement in
fact can easily be seen to imply degeneracy of the Leray spectral sequence.
3) The Leray spectral sequence always degenerates at E2 for morphisms from
a complex projective manifold onto a smooth curve. See Theorem 4.24. For
a vast generalization see Theorem 14.11.

To interpret the final assertion of Proposition 1.38 in case f is a smooth
projective family, we look a bit more carefully at the local system Rmf⇤RS

with stalks Hm(Xs;R). The global sections of this local system are the in-
variants under the monodromy action. Thus we have:

Corollary 1.40 (Global invariant cycle theorem or locus of an

invariant cycle theorem). Let f : X ! S be a smooth Kähler family (see
Examples 1.37, 2). Then for all s 2 S the invariants in Hm(Xs; Q) under the
monodromy action come from restriction of global classes on X.

Historical Remarks. The topics treated in § 1.1.1–1.2.2 are by now classical and
for most details we refer to standard texts such as [Weil] or [Wells]. The idea to make
use of the holonomy group in order reprove the Lefschetz decomposition theorem
is due to Chern [Ch]. This geometric idea reduces in fact the existence of such a
decomposition to linear algebra. Apparently Hecht refined the linear algebra part by
making use of representation theory of SL(2)(see [Wells, p. 183]), an idea we have
followed. In this context the complex theory su�ces, but later, in Chap. 10 we need
the theory of real representations. This is not so standard and we have preferred to
give full details by adapting the already streamlined presentation one can find in
[Dem, § 6C]. That the Lefschetz decomposition can be used to show degeneration
of the Leray spectral sequence, as explained in § 1.3 was first observed by Deligne
[Del68].
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The terminology “locus of an invariant cycle” is due to Lefschetz and can be
explained as follows. Suppose that the fibres of a family have dimension n. Consider
a (2n�m)-cycle � on a fixed fibre over a point s which is invariant under monodromy.
It can be displaced along any path starting at s defining a cycle in the fibre over the
end point fibre. Take the union of such cycles arising for all possible paths in the
base. It is the locus inside the total space traced out by the invariant cycle in the
fibre over t when t varies over the base S. This locus, according to Lefschetz [Lef],
should be a (2n + 2dim S �m)-cycle on the total space restricting to the invariant
cycle we started with.

Lefschetz ultimate goal, constructing algebraic cycles in an inductive manner,
has been pursued later by Hodge [Ho50] and Grothendieck [Groth69], resulting in
the “Induction Principle”. To explain the latter we need a lot more Hodge theory
and we return to this later (§ 12.2).



2

Pure Hodge Structures

The Hodge decomposition of the n-th cohomology group of a Kähler manifold is
the prototype of a Hodge structure of weight n. In this chapter we study these
from a more abstract point of view. In § 2.1 and § 2.2 the foundations are laid.
Hodge theoretic considerations for various sorts of fundamental classes associated
to a subvariety are given in § 2.4.

In § 2.3 some important concepts are developed which play a central role in
the remainder of this book, in particular the concept of a Hodge complex, which is
introduced in § 2.3. The motivating example comes from the holomorphic De Rham
complex on a compact Kähler manifold and is called the Hodge-De Rham complex.
However, to show that this indeed gives an example of a Hodge complex follows only
after a strong form of the Hodge decomposition is shown to hold. This also allows
one to put a Hodge structure on the cohomology of any compact complex manifold
which is bimeromorphic to a Kähler manifold, in particular algebraic manifolds that
are not necessarily projective.

In Chapter 3 we shall extend the notion of a Hodge complex of sheaves to that
of a mixed Hodge complex of sheaves.

We finally show in § 2.5 that the cohomology of varieties with quotient singu-
larities also admits a pure rational Hodge structure.

2.1 Hodge Structures

2.1.1 Basic Definitions

We place the definition of a weight k Hodge structure (Def. 1.12) in a wider
context. Let V be a finite dimensional real vector space and let VC = V ⌦ C

be its complexification.

Definition 2.1. A real Hodge structure on V is a direct sum decomposi-
tion

VC =
M

p,q2Z

V p,q,with V p,q = V q,p (the Hodge decomposition.)
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The numbers
hp,q(V ) :=dim V p,q

are Hodge numbers of the Hodge structure. The polynomial

Phn(V ) =
X

p,q2Z

hp,q(V )upvq (II–1)

its associated Hodge number polynomial.
If the real Hodge structure V is of the form V = VR ⌦R R where R is

a subring of R and VR is an R-module of finite type we say that VR carries
carries an R-Hodge structure.

A morphism of R-Hodge structures is a morphism f : VR ! WR of
R-modules whose complexification maps V p,q to W p,q.

If V is real Hodge structure, the weight k part V (k) is the real vector
space underlying

L
p+q=k

V p,q. If V = V (k), we say that V is a weight k
real Hodge structure and if V = VR ⌦R R we speak of a weight k R-Hodge
structure. Usually, if R = Z we simply say that V or VZ carries a weight k
Hodge structure.
Examples 2.2. i) The De Rham group Hk

DR
(X) of a compact Kähler man-

ifold has canonical real Hodge structure of weight k defined by the clas-
sical Hodge decomposition. We have seen (Corr. 1.13) that it is in fact
an integral Hodge structure.
ii) The Hodge structure Z(1) of Tate (I–3) has variants over any subring
R of R: we put R(k) :=R⌦Z Z(k).
iii) The top cohomology of a compact complex manifold X of dimension
say n, can be identified with a certain Tate structure. Indeed, the trace
map is the isomorphism given by

tr : H2n(X; R) ⇠�! R(�n), ! 7!
✓

1
2⇡i

◆n Z

X

!. (II–2)

Let V = V (k) be a weight k Hodge structure. The Hodge filtration
associated to this Hodge structure is given by

F p(V ) =
M

r�p

V r,s.

Conversely, a decreasing filtration

VC � · · · � F p(V ) � F p+1(V ) · · ·

on the complexification VC with the property that F p \ F q = 0 whenever
p + q = k + 1 defines a weight k Hodge structure by putting

V p,q = F q \ F q.

The condition that F p \ F q = 0 whenever p + q = k + 1 is equivalent to
F p � F k�p+1 = VC and we say that the filtration F • is k-opposed to its
complex conjugate filtration.

⼴的 : DUsF
品
, 提:Pr古去, 叮

r冷吃⼀ p
≤B ,的fk的照 0

⼀
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Definition 2.3 (Multi-linear algebra constructions). Suppose that V ,
W are real vector spaces with a Hodge structure of weight k, respectively `,
the Hodge filtration on V ⌦W is given by

F p(V ⌦W )C =
X

m

Fm(VC)⌦ F p�m(WC) ⇢ VC ⌦C WC.

This gives V ⌦ W a Hodge structure of weight k + ` with Hodge number
polynomial given by

Phn(V ⌦W ) = Phn(V )Phn(W ). (II–3)

Similarly, the multiplicative extension of the Hodge filtration to the tensor
algebra

TV =
M

a

TaV with TaV :=
aO

V

of V is defined by

F pTaV =
X

k1+···ka=p

F k1VC ⌦ . . . F kaVC

and gives a Hodge structure of weight ak on TaV . It induces a Hodge structure
of the same weight on the degree a-piece of the symmetric algebra SV of V
and the exterior algebra ⇤V of V . We can also put a Hodge structure on
duals, or, more generally spaces of homomorphisms as follows:

F p Hom(V,W )C = {f : VC !WC | fFn(VC) ⇢ Fn+p(WC) 8n}

This defines a Hodge structure of weight ` � k on Hom(V,W ) with Hodge
number polynomial

Phn(Hom(V,W )(u, v) = Phn(V )(u�1, v�1)Phn(W )(u, v). (II–4)

In particular, taking W = R with WC = W 0,0 we get a Hodge structure of
weight �k on the dual V _ of V with Hodge number polynomial

Phn(V _)(u, v) = Phn(V )(u�1, v�1). (II–5)

Finally, we can define a Hodge structure of weight ak � b` on TaV ⌦ TbV _ =
V ⌦a ⌦ (V _)⌦b using the multiplicative extension of F to the tensor algebra
TV ⌦TV _. The multiplication in each of the algebras TV , SV , ⇤V , TV ⌦TV _

is a morphism of Hodge structures.

Given any R-Hodge structure V , define its r-th Tate twist by

V (r) :=V ⌦R R(r).

If V has weight m, V (r) has weight m� 2r and

⑤ Upf -→ B tWBig

(E PthiPif). (Ih' ☆"
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36 2 Pure Hodge Structures

V (r)p,q = V p+r,q+r.

Note that one has:
Phn(V (r)) = Phn(V )(uv)�r. (II–6)

If W is another R-Hodge structure, giving A morphism V (�r) ! W is also
called a morphism of Hodge structures V !W of type (r, r). Morphisms
of Hodge structures preserve the Hodge filtration. The converse is also true:

Proposition 2.4. Let V,W be R-Hodge structures of weight k. Suppose that
f : V !W is an R-linear map preserving the R-structures and such that

fC(F pV ) ,! F pW.

Then f is a morphism of R-Hodge structures.

Proof. One has fC(F qV ) ,! F qW , so, if p + q = k, we have

fC(V p,q) = fC(F pV ) \ F qV ,! F pW \ F qW = W p,q. ut

Clearly, the image of a morphism of Hodge structures is again a Hodge struc-
ture. By the above constructions the duality operation preserves Hodge struc-
tures, and so the kernel of a morphism of Hodge structures is a Hodge struc-
ture. Using the preceding multi-linear algebra constructions, it is not hard to
see that we in fact have:

Corollary 2.5. The category of R-Hodge structures is an abelian category
which we denote hs

R
. If R = Z we simply write hs.

Hodge structures can also be defined through group representations and
this is useful in the context of Mumford-Tate groups (see § 2.2). Introduce the
algebraic group

S := {the restriction of scalars from C to R à la Weil of the group Gm}.

By definition, the complex points of S correspond to pairs of points z, z0 2
C
⇤. The point z corresponds to the standard embedding C

⇥ ,! C while z0

corresponds to the complex conjugate embedding. Hence complex conjugation
sends (z, z0) to (z̄0, z̄) and the real points S(R) consists of C

⇥ embedded into
the group S(C) = C

⇥⇥C
⇥ of complex points through a 7! (a, ā). So S is just

the group C
⇥ considered as a real algebraic group.

Note that there is a natural embedding w : Gm ! S of algebraic groups
which on complex points is the diagonal embedding a 7! (a, a) and on real
points is just the embedding of R

⇥ ,! C
⇥. Note that C

⇥ = R
⇥ · S1 where S1

are the real points of the unitary group U(1). We can extend the embedding
S1 ,! C

⇥ to an embedding U(1) ,! S and then

S = U(1) · w(Gm).
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2.1 Hodge Structures 37

Definition 2.6. A complex Hodge structure on a complex vector
space W is a representation of S(C) on W . This amounts to a bigrading

W =
M

p,q

W p,q, W p,q = {w 2W | (a, b)w = a�pb�qw, (a, b) 2 S(C)}.

Now suppose that W = VC, where V is a real vector space. Then the
above representation is a real representation if and only if the action of S(C)
on the complex conjugate of any of the above summands is the summand
on which the action is the conjugate action. This means precisely that the
complex conjugate of W p,q is W q,p. Looking at the action of the subgroup
Gm(R) = R

⇥ we obtain the decomposition of V into weight spaces

V (k) = {v 2 V | av = a�kv, a 2 R
⇥},

i.e. V (k) is a real Hodge structure of weight k. If the representation is defined
over a subring R of R, these are weight k R-Hodge structures and conversely.

Suppose that we only have an U(1)-action on V . Then W splits into
eigenspaces W ` on which u acts via the character u`. Again W ` is the con-
jugate of W�` and we would have a weight k Hodge structure if we declare
its weight to be k: just put W p,q = W k�2q = W�k+2p. Conversely, a real
Hodge structure of weight k is an U(1)-action on W defined over R plus the
specification of the number k. In fact, the argument shows:

Lemma 2.7. let VR be an R-module of finite rank. Then VR admits the struc-
ture of an R-Hodge structure if and only if there is a homomorphism

h : S! GL(V ⌦R R)

defined over R, such that h�w : Gm ! GL(V ⌦R R) is defined over R.
Equivalently, an R-Hodge structure consists of an R-space VR equipped

with an action of U(1) defined over R.

As an example, consider the one-dimensional Hodge structures. These are
exactly the Hodge structures of Tate. The group U(1) acts trivially on these.
So the action of U(1) defined by a Hodge structure F on V is the same
as the one given by F (`) on V (`). This illustrates the fact that S = Gm ·
U(1) where the action of the subgroup Gm registers the weight and this gives
another interpretation of the preceding weight shift as the multiplication with
a character of Gm. In this setting we have the Weil operator

C|W p,q = ip�q, (II–7)

the image of i 2 S(R) under the representation (recall that i is identified with
(i,�i) 2 S(C)).

Recall the construction of the Grothendieck group (Def. A.4) 3). It is de-
fined for any abelian category such as the category hs

R
of R-Hodge structures:
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38 2 Pure Hodge Structures

it is the free group on the isomorphism classes [V ] of Hodge structures V mod-
ulo the subgroup generated by [V ]�[V 0]�[V 00] where 0! V 0 ! V ! V 00 ! 0
is an exact sequence of R-Hodge structures. It carries a ring structure com-
ing from the tensor product. Because the Hodge number polynomial (II–1) is
clearly additive and by (II–3) behaves well on products, we have:

Lemma 2.8. The Hodge number polynomial defines a ring homomorphism

Phn : K0(hs
R
)! Z[u, v, u�1, v�1].

Inside K0(hs
R
) Tate twisting r-times can be expressed as [H] 7! [H] · L

�r

where
L = H2(P1) 2 K0(hs

R
). (II–8)

2.1.2 Polarized Hodge Structures

The classical example of polarized Hodge structures is given by the primitive
cohomology groups on a compact Kähler manifold (X,!). If the Kähler class
[!] belongs to H2(X;R) for some subring R of R, the Hodge-Riemann form
Q restricts to an R-valued form on

HR = Hk

prim
(X;R) := Im

⇥
Hk(X;R)! Hk(X; C)

⇤
\Hk

prim
(X)

where the homomorphism is the coe�cient homomorphism. Recall the Hodge-
Riemann bilinear relations with respect to the Hodge-Riemann form Q (see
Definition 1.33). The first of these relations states that the primitive (p, q)-
classes are Q-orthogonal to (r, s)-classes as long as (p, q) 6= (s, r). This can be
conveniently reformulated in terms of the Hodge filtration Fm =

L
p�m

Hp,q

prim

as follows. Note that Fm is Q-orthogonal to F k�m+1 since in the latter only
(r, s)-forms occur with r � k�m+1 while in the first (p, q)-forms occur with
q  k �m. The dimension of Fm being complementary to dim F k�m+1, we
therefore have that the Q-orthogonal complement of Fm equals F k�m+1.

The second Hodge-Riemann relation can be reformulated using the Weil
operator C, which – as we saw before (II–7)– acts as multiplication by ip�q

on (p, q)-forms. We find that in writing ip�qQ(u, ū) = Q(Cu, ū), u a primitive
(p, q)-form, the right hand side makes sense for any k-form. In this way we
arrive at the following

Definition 2.9. A polarization of an R-Hodge structure V of weight k is
an R-valued bilinear form

Q : V ⌦ V �! R

which is (�1)k-symmetric and such that

1) The orthogonal complement of Fm is F k�m+1;
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2.1 Hodge Structures 39

2) The hermitian form on V ⌦ C given by

Q(Cu, v̄)

is positive-definite.

Any R-Hodge structure that admits a polarization is said to be polarizable.

Example 2.10. The m-th cohomology of a compact Kähler manifold is an in-
tegral Hodge structure of weight m. If R is a field, this Hodge structure is
R-polarizable if there exists a Kähler class in H2(X;R). In fact, since R is
a field, the Lefschetz decomposition (I–12) yields a direct splitting of Hodge
structures

Hm(X;R) '
M

r�(k�n)+

Hm�2r

prim
(X;R)(�r)

and each of the summands carries a polarization. The Tate twist arises nat-
urally: instead of the Kähler class we take 1/(2⇡i) times this class, which is
represented by the curvature form (Def. B.39) of the Kähler metric. It belongs
to H2(X;R)(�1) and cup product with it defines the modified Lefschetz-
operator, say L̃ : Hk(X;R)! Hk+2(X;R)(�1). To have a polarization on all
of Hm(X;R) we demand that the direct sum splitting be orthogonal and we
change signs on the summands (see [Weil, p. 77]):

Q(
P

r
Lrar,

P
s
Lsbs) := ✏(k)

P
r
(�1)r

R
X

L̃n�m+2r(ar ^ br),
ar, br 2 Hm�2r(X;R).

Now there is a particularly concise reformulation of Definition 2.9 if we
consider S = (2⇡i)�kQ as a morphism of Hodge structures V ⌦ V ! R(�k).
Since Fm(V ⌦ V ) =

P
r+s=m

F rV ⌦ F sV , this demand is equivalent to the
first relation. For the second, note that it follows as soon as we know that the
real-valued symmetric form Q(Cu, v) is positive definite on the real primitive
cohomology. This then leads to the following

Definition 2.9 (bis). A polarization of an R-Hodge structure V of weight
k is a homomorphism of Hodge structures

S : V ⌦ V �! R(�k)

which is (�1)k-symmetric and such that the real-valued symmetric bilinear
form

Q(u, v) :=(2⇡i)kS(Cu, v) (II–9)

is positive-definite on V ⌦R R.

Corollary 2.11. Let V be an R-polarizable weight k Hodge structure. Any
choice of a polarization on V induces an isomorphism R-Hodge structures
V

⇠�! V _(�k) of weight k.

waignt
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40 2 Pure Hodge Structures

We finish this section with an important principle:

Corollary 2.12 (Semi-simplicity). Let (V,Q) be an R-polarized Hodge struc-
ture and let W be a Hodge substructure. Then the form Q restricts to an
R-polarization on W . Its orthogonal complement W? likewise inherits the
structure of an R-polarized Hodge structure and V decomposes into an or-
thogonal direct sum V = W �W?. Hence, the category of R-polarized Hodge
structures is semi-simple.

Proof. Since W is stable under the action of the Weil operator, the form S
given by (II–9) restricts to a positive definite form on W ⌦R R and so we have
an orthogonal sum decomposition as stated.

2.2 Mumford-Tate Groups of Hodge Structures

In this section (V, F ) denotes a finite dimensional Q-Hodge structure of weight
k. We have seen in § 2.1 that this means that we have a homomorphism

hF : S! GL(V )

of algebraic groups such that t 2 w(Gm(R)) acts as v 7! t�kv. Recall also
that S = U(1) ·w(Gm). Restricting hF to the subgroup U(1) gives the homo-
morphism of algebraic groups

hF |U(1) : U(1)! GL(V ).

The group S has two characters z and z̄ which on complex points S(C) =
C
⇤⇥C

⇤ correspond to the two projections and hence on S(R) give the identity,
respectively the complex conjugation, which explains the notation.

Definition 2.13. 1) The Mumford-Tate group MT(V, F ) of the Hodge
structure (V, F ) is the Zariski-closure of the image of hF in GL(V ) over Q,
i.e. the smallest algebraic subgroup G of GL(V ) defined over Q such that
G(C) contains hF (S(C)).
2) The extended Mumford-Tate group gMT(V, F ) is the Zariski-closure
of the image of [hF ⇥ z] in GL(V ) ⇥ Gm, i.e. the smallest subgroup G̃ of
GL(V )⇥Gm defined over Q and such that G̃(C) contains (hF ⇥ z)S(C) .
3) The Hodge group or special Mumford-Tate group HG(V, F ) is the
Zariski-closure of the image of hF |U(1).

Remark 2.14. Projection onto the first factor identifies gMT (V, F ) up to isogeny
with MT(V, F ), unless V has weight 0 and then it equals MT(V, F ) ⇥ Gm.
As an illustration, consider V = Q(p). Then for (u, v) 2 C

⇤ ⇥ C
⇤ = S(C),

hF (u, v)t = (uv)�pt and the extended Mumford-Tate group equals Gm em-
bedded in Gm ⇥ Gm via u 7! (u�2p, u) where the situation with respect to
projection onto the first factor di↵ers for the cases p = 0 and p 6= 0.
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To have a more practical way of determining the Mumford-Tate group,
we use as a motivation that all representations of GL(V ) can be found from
looking at the induced action on tensors

Tm,nV = V ⌦m ⌦ (V _)⌦n.

Indeed, this is a property of reductive algebraic groups as we shall see below.
Together with the action of Gm on the Hodge structure of Tate Q(p) this de-
fines a natural action of GL(V )⇥Gm on Tm,nV (p) and hence an action of the
Mumford-Tate group gMT(V, F ) on Tm,nV (p). The induced Hodge structure
on Tm,nV (p) has weight (m� n)k � 2p. Assume it is even, say w = 2q. Then
HG(V, F ) acts trivially on Hodge vectors (i.e. rational type (q, q)-vectors) in-
side Tm,nV (p), while any t 2 w(Gm(R)) multiplies an element in Tm,nV (p) of
pure type (q, q) by |t|2q. Hence, if the weight of Tm,nV (p) is zero, the Hodge
vectors inside Tm,nV (p) are fixed by the entire Mumford-Tate group. The
content of the following theorem is the main result of this section.

Theorem 2.15. The Mumford-Tate group gMT (V, F ) is exactly the (largest)
algebraic subgroup of GL(V ) ⇥ Gm which fixes all Hodge vectors inside
Tm,nV (p) for all (m, n, p) such that (m � n)k � 2p = 0. The Hodge group
is the subgroup of GL(V ) which fixes all Hodge vectors in all tensor represen-
tations Tm,nV .

Before embarking on the proof let us recall that an algebraic group is
reductive if it is the product of an algebraic torus and a (Zariski-connected)
semi-simple group, both of which are normal subgroups. A group is semi-
simple if it has no closed connected commutative normal subgroups except
the identity. The groups SL(n),SO(n),SU(n),Sp(n) are examples of semi-
simple groups. The group GL(n) itself is reductive. In the sequel we use at
several points (see [Sata80, I.3]:

Theorem 2.16. An algebraic group over a field of characteristic zero is re-
ductive if and only if all its finite-dimensional representations decompose into
a direct product of irreducible ones.

We need now a general result about the behaviour of tensor representations
for reductive groups G with respect to algebraic subgroups H. For simplicity,
assume that G ⇢ GL(V ). and consider Tm,nV as a G-representation. For any
subgroup H of G, the set of vectors inside Tm,nV fixed by H is as usual
denoted by (Tm,nV )H . We then put

H̃ :={g 2 G | there is some (m, n) such that g|(Tm,nV )H = id}.

If g fixes (Tm,n)H and g0 fixes (Tm
0
,n
0
V )H , then gg0�1 fixes (Tm�m

0
,n�n

0
V )H

so that H̃ is a subgroup of G. This group obviously contains H and we want
to know when the two groups coincide. This is the criterion:
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Lemma 2.17. In the above notation H = H̃ if H is reductive or if every
character of H lifts to a character of G.

Proof. The crucial remark is that any representation of G is contained in a
direct sum of representations of type Tm,nV (see [DMOS, I, Prop 3.1]). Also,
by Chevalley’s theorem (loc. cit.) the subgroup H is the stabilizer of a line
L in some finite dimensional representation V , which we may assume to be
such a direct sum. If H is reductive, V = V 0 � L for some H-stable V 0 and
V _ = (V 0)_�L_ so that H is exactly the group fixing a generator of L⌦L_ in
V ⌦V _ and so H = H̃. If all characters of H extend to G, the one-dimensional
representation of H given by L comes from a representation of G. Then H is
the group fixing a generator of L⌦L_ inside V ⌦ V _, a tensor representation
of the desired type. ut

Proof (of the Theorem): We apply the preceding with G = GL(V ) ⇥ Gm

and H the extended Mumford-Tate group. By definition, the largest algebraic
subgroup of GL(V ) ⇥ Gm which fixes all Hodge vectors inside Tm,nV (p),
(m � n)k � 2p = 0 is the group H̃. We must show that H̃ = H. To do this,
we use the criterion that any rationally defined character � : MT(V ) ! Gm

should extend to all of GL(V )⇥Gm. Look at the restriction of this character
to the diagonal matrices Gm ⇢ MT(V, F ). By Example 2.2 2), it defines a
Hodge structure of Tate Q(k) and so, after twisting W by Q(�k) the character
becomes trivial and so extends to GL(V )⇥Gm as the trivial character. Then
also the original character extends to GL(V )⇥Gm. ut

The importance of the previous theorem stems from the following

Observation 2.18. The rational Hodge substructures of Tm,nV are exactly
the rational sub-representations of the Mumford-Tate group acting on Tm,nV .

Proof. Suppose that W ⇢ Tm,nV is a rational sub-representation of the
Mumford-Tate group. Then the composition h : S ,! MT(V, F ) ! GL(W )
defines a rational Hodge structure on W . The converse can be seen in a similar
fashion. ut

Next, suppose that we have a polarized Hodge structure. Almost by defini-
tion of a polarization (Def. 2.9-bis) the Hodge group preserves the polarization:
for all t 2 U(1) and u, v 2 V one has S(t · u, t · v) = S(u, v). Using this one
shows:

Theorem 2.19. The Mumford-Tate group of a Hodge structure which admits
a polarization is a reductive algebraic group.

Proof. It su�ces to prove this for the Hodge group. The Weil element C =
hF (i) is a real point of this group. The square acts as (�1)k on V and hence lies
in the centre of MT(V, F ). The inner automorphism � := ad(C) of HG(V, F )
defined by C is therefore an involution. Such an involution defines a real-form
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G� of the special Mumford-Tate group. By definition this is the real algebraic
group G� whose real points are

G�(R) = {g 2 HG(V, F )(C) | �(g) = g}.

There is an isomorphism

G�(C)
⇠=�! HG(V, F )(C)

such that complex conjugation on G�(C) followed by � corresponds to complex
conjugation on HG(V, F )(C). This means that

�(ḡ) = ad(C)(ḡ) = g. (II–10)

If the Hodge structure (V, F ) admits a polarization Q, the following com-
putation shows that G� admits a positive definite form and hence is compact.
For u, v 2 VC and g 2 HG(V, F )(C) we have, applying (II–10)

Q(Cu, v̄) = (ḡCu, ḡv̄) = Q(CC�1ḡCu) = Q(C ad(C)(ḡ)u, gv) = Q(Cgu, gv).

It follows that the positive definite form on VR given by Q(C�,�) is invariant
under G�.

The compactness of G� implies that any finite dimensional representation
of it completely decomposes into a direct product of irreducible ones and so,
by the characterization of reductive groups, G� and also the special Mumford-
Tate group is reductive. ut

Since MT(V, F ) is the product of the Hodge group and the diagonal ma-
trices and since a group is semi-simple if and only if the identity is the only
normal closed connected abelian subgroup, the previous theorem implies:

Corollary 2.20. The Hodge group is semi-simple precisely when the centre
of the Mumford Tate group consists of the scalar matrices.

2.3 Hodge Filtration and Hodge Complexes

2.3.1 Hodge to De Rham Spectral Sequence

Recall (Theorem 1.8) that for a Kähler manifold X, we have a Hodge decom-
position and an associated Hodge filtration

Hk(X, C) =
M

p+q=k

Hr,s(X), F pHk(X, C) =
M

r�p

Hr,k�r(X).

Let us first explain how to define a putative Hodge filtration on De Rham
cohomology of any compact complex manifold X in terms of a spectral se-
quence relating the holomorphic and di↵erentiable aspects. First embed the
holomorphic De Rham complex into the complexified De Rham complex
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⌦•

X

j

�! E•
X

(C).

The decomposition into types of the sheaf complex E•(C) gives the filtered
complex

F p(E•(C)) =
M

r�p

Er,•�r

X

and the homomorphism j becomes a filtered homomorphism provided we put
the trivial filtration

��p⌦•

X
= {0! · · ·! 0! ⌦p

X
! ⌦p+1

X
· · ·! ⌦n

X
} (n = dimX).

on the De Rham complex. Then Grp(j) gives the Dolbeault complex

0! ⌦p

X
! Ep,0

X

@�! ! Ep,1

X

@�! · · ·

By Dolbeault’s lemma this is exact and so j induces a quasi-isomorphism
on the level of graded complexes. So the E1-terms of the first spectral se-
quence, which computes the hypercohomology of the graded complex (see
equation (A–29)) is just the De Rham-cohomology of the preceding com-
plex, i.e. 0Ep,q

1
= Hq(X,⌦p

X
). The first spectral sequence of hypercohomology

(viewed as coming from the trivial filtration) reads therefore

0Ep,q

1
= Hq(X,⌦p

X
) =) H

p+q(X, ⌦•

X
) = Hp+q

DR
(X; C)

(Hodge to De Rham spectral sequence).

Consider now the filtration on the abutment:

Definition 2.21. The putative Hodge filtration on Hk

DR
(X; C) is given

by
F pHk

DR
(X; C) = Im

⇣
H

k(X, ��p⌦•)
↵p��! H

k(X,⌦•)
⌘

.

The Hodge subspaces are given by

Hp,q(X) = F pHp+q

DR
(X; C) \ F qHp+q

DR
(X; C).

The terminology is justified by considering a Kähler manifold.

Proposition 2.22. Let X be a compact Kähler manifold. Then the Hodge to
De Rham spectral sequence degenerates at E1; the putative Hodge filtration
coincides with the actual Hodge filtration, and the Hodge subspaces Hp,q(X)
coincide with the subspace of the De Rham classes having a harmonic repre-
sentative of type (p, q).

Proof. As seen before (see the discussion following Theorem B.18), we have a
canonical isomorphism Hr,s(X) ⇠= Hs(X, ⌦r

X
) (Dolbeault’s theorem) and so

X

p+q=k

dim 0Ep,q

1
=

X

p+q=k

dim Hp,q = dim Hk(X; C) =
X

p+q=k

dim Ep,q

1
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which implies that the spectral sequence degenerates at E1 (since E
r+1

is a subquotient of E
r
). Hence the map ↵p is injective and hp,k�p(X) =

dim H
k(X,��p⌦•))� dim H

k(X, ��p+1⌦•)) and so

dim H
k(X,��p⌦•)) =

X

r�p

dim Hr,k�r(X) = dim F pHk(X; C)

which means that the image of j⇤
p

is F pHk(X; C). Also Grp(j) induces an
isomorphism Hq(⌦p

X
)! Hp,q(X) and so

F pHk(X; C) =
M

r�p

Hr,k�r(X).ut

Remark 2.23. The proof of the degeneration of the Hodge to De Rham spectral
sequence hints at an algebraic approach to the Hodge decomposition. In fact
Faltings [Falt] and Deligne-Illusie [Del-Ill] found a purely algebraic proof for
the degeneracy of the Hodge to De Rham which works in any characteristic.
The De Rham cohomology in this setting by definition is the hypercohomology
of the algebraic De Rham complex, the algebraic variant of the holomorphic De
Rham complex. The Hodge filtration is again induced by the trivial filtration
on the De Rham complex. The proof then proceeds by first showing it first
in characteristic p for smooth varieties of dimension > p which can be lifted
to the ring of Witt vectors of length 2. Since this can be arranged for if the
variety is obtained from a variety in characteristic zero by reduction modulo
p the result then follows in characteristic zero. In passing we note that there
are many examples of surfaces in characteristic p for which the Hodge to De
Rham spectral sequence does not degenerate. See [Del-Ill, 2.6 and 2.10] for a
bibliography.

2.3.2 Strong Hodge Decompositions

Since by Corollary 1.10 the space Hp,q(X) can be characterized as the sub-
space of Hp+q

DR
(X; C) of classes representable by closed (p, q)-forms, the pre-

vious proposition motivates the following definition.

Definition 2.24. Let X be a compact complex manifold. We say that Hk(X; C)
admits a Hodge decomposition in the strong sense if

1) For all p and q with p + q = k the Hodge (p, q)-subspace Hp,q(X) as
defined above can be identified with the subspace of Hk(X; C) consisting
of classes representable by closed forms of type (p, q). The resulting map

Hp,q(X)! Hp,q

@
(X) ⇠= Hq(⌦p

X
)

is required to be an isomorphism.
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2) There is direct decomposition

Hk

DR
(X; C) =

M

p+q=k

Hp,q(X).

3) The natural morphism from Bott-Chern cohomology to De Rham coho-
mology

Hp,q

BC
(X) =

d-closed forms of type (p, q)
@@�Ep�1,q�1

X

! Hp+q

DR
(X)⌦ C

which sends the class of a d-closed (p, q)-form to its De Rham class is
injective with image Hp,q(X).

Example 2.25. For any compact Kähler manifold X the Hodge decomposition
on Hk(X; C) is a Hodge decomposition in the strong sense.

By definition, the graded pieces of the putative Hodge filtration sequence
give the 0E1-terms of the spectral sequence. If the Hodge to De Rham spectral
sequence degenerates at E1 it follows therefore that these graded pieces are
canonically isomorphic to the Dolbeault groups. It does not imply that the
putative Hodge filtration defines a Hodge structure on the De Rham groups.
It is for instance not true in general that the graded pieces are isomorphic to
the Hodge subspaces, even when the spectral sequence degenerates at E1.

Example 2.26. As is well known (see e.g. [B-H-P-V, Chapter IV]), for surfaces
the Hodge to De Rham spectral sequence, also called the Fröhlicher spectral
sequence, degenerates at E1 whereas there is no Hodge decomposition on
H1(X) for a non-Kähler surface X since b1(X) is odd for those. This is for
example the case of a Hopf surface which is the quotient of C

2 � {0} by
the cyclic group of dilatations z ! 2kz, k 2 Z. Such a surface is indeed
di↵eomorphic to S1 ⇥ S3 and its first Betti number is 1 and so H1 can never
admit a Hodge decomposition. In fact the two Hodge subspaces are equal and
hence equal to F 1 = F 0, the Dolbeault group H1(OX) maps isomorphically
onto these, whereas the other Dolbeault group H0(⌦X) is zero and maps to
F 0/F 1 = 0.

The following proposition summarizes what one can say in general. We
first introduce some terminology. We say that a filtration F on a the com-
plexification of a real vector space V is k-transverse if F p \ F q+1 = {0}
whenever p + q = k. Note that this is automatic when F defines a real Hodge
structure of weight k on V and a k-transverse filtration is a Hodge filtration
if dim F p + dim F q+1 = dim V whenever p + q = k.

Proposition 2.27. Suppose that the Hodge to De Rham spectral sequence de-
generates. Then the Dolbeault group Hq(X, ⌦p

X
) is canonically isomorphic to

Grp

F
Hp+q

DR
(X; C) and one has the equality
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bk := dimHk(X; C) =
X

p+q=k

dim Hq(⌦p

X
).

Suppose that the putative Hodge filtration on Hk(X; C) is k-transverse, and
that it is (2n�k)-transverse on H2n�k(X; C). Then the putative Hodge filtra-
tions on Hk(X; C) and H2n�k(X; C) are both Hodge filtrations. For p+q = k
and p + q = 2n� k the spaces Hq(X, ⌦p

X
) ⇠= Grp

F
Hp+q

DR
(X; C) get canonically

identified with Hp,q(X).

Proof. We only need to prove the statements about the putative Hodge fil-
tration. For this, we provisionally set hp,q = dim Hq(⌦p

X
) so that bk =P

p+q=k
hp,q. Now for any t we have dim F t = dim F t =

P
r�t

hr,k�r. The
assumption on the putative Hodge filtration then implies

X

r�p

hr,k�r +
X

r�k�p+1

hr,k�r  bk =
X

r

hr,k�r

and hence X

r�p

hr,k�r 
X

rk�p

hr,k�r.

This inequality for 2n � k-cohomology with p replaced by n � k � p, to-
gether with Serre duality (hp,q = hn�p,n�q) yields the reverse inequality.
So we have equality and hence the dimensions of F p and F q+1 add up to
dim Hp+q(X; C) when p+q = k or p+q = 2n�k. So we get Hodge structures
and F pHk(X; C) =

L
r�p

Hr,s(X). Since Hq(⌦p

X
) is canonically isomorphic

to Grp

F
Hp+q(X; C) ⇠= Hp,q(X), the last assertion follows as well. ut

In fact, we can even show that the assumptions of the preceding Propo-
sition guarantee a Hodge decomposition in the strong sense on Hk(X) and
H2m�k(X). Indeed, we have the following statement which is an algebraic
version of the @@-Lemma (1.9). For a proof see [B-H-P-V, I, Lemma 13.6].
Corollary 2.28. 1) Under the assumptions of Proposition 2.27, any coho-

mology class in degree k or in degree (2n� k) can be represented by a form
which is @- as well as @-closed.
2) For a d-closed (p, q)-form ↵, p + q = k or p + q = 2n � k the following
statements are equivalent:
a) ↵ = d� for some p + q � 1-form �;
b) ↵ = @�00 for some (p, q � 1)-form �00;
c) ↵ = @@� for some (p� 1, q � 1)-form �;

4) The natural morphism

Hp,q

BC
(X) =

d-closed forms of type (p, q)
@@�Ep�1,q�1

X

! Hp+q

DR
(X)⌦ C

which sends the class of a d-closed (p, q)-form to its De Rham class is in-
jective with image Hp,q(X). In particular, the latter space consists precisely
of the De Rham classes representable by a closed form of type (p, q).
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5) For p + q = k or p + q = 2n� k the natural map

Hp,q(X)! Hp,q

@
(X) ⇠= Hq(⌦p

X
)

resulting from the identification of Hp,q(X) as the space consisting of the
De Rham classes representable by a closed form of type (p, q) is an isomor-
phism.

Despite the fact that holomorphic images of Kähler manifolds of the same
dimension are not always Kähler [Hart70, p. 443] we can show:

Theorem 2.29. Let X,Y be compact complex manifolds. Suppose that X
is Kähler and that f : X ! Y is a surjective holomorphic map. Then
Hk(Y ) admits a Hodge decomposition in the strong sense. In fact f⇤ :
Hk(Y ; R)! Hk(X; R) is injective and f⇤Hk(Y ; R) is a real Hodge substruc-
ture of Hk(X; R).

Proof. We first show that f⇤ is injective. In fact, this holds for any surjective
di↵erentiable map f : X ! Y between compact di↵erentiable manifolds. To
see this, first reduce to the equi-dimensional case by choosing a submanifold
Z ⇢ X to which f restricts as a generically finite map, say of degree d. With
f! Poincaré dual to f⇤, the composition f!

�f⇤ is multiplication with d and so
f⇤ is injective.

Next, we observe that for m = dim Y , a generator of H2m(Y ; C) =
Hm,m(Y ) = Hm(⌦m

Y
) is represented by the volume form volh with respect to

some hermitian metric h on Y . If ! is the Kähler form on X, the form !c,
c = dim X � dim Y restricts to a volume form on the generic fibre F of f and
hence Z

X

f⇤(volh) ^ !c =
Z

Y

volh
Z

F

!c 6= 0.

So f⇤ : Hm(⌦m

Y
) ! Hm(⌦m

X
) is non-zero. Now one uses Serre duality to

prove injectivity on Hq(⌦p

Y
) for all p and q. Indeed, given any non-zero class

↵ 2 Hq(⌦p

Y
) choose � 2 Hm�q(⌦m�p

Y
) such that ↵^� 6= 0. Then f⇤↵^f⇤� =

f⇤(↵ ^ �) 6= 0 and hence f⇤↵ 6= 0.
Now compare the Hodge to De Rham spectral sequence for Y with that

for X. What we just said shows that the E1-term of the first injects into
the E1-term of the latter. For X the Hodge to De Rham spectral sequence
degenerates and so dr = 0, r � 1 and E1 = E2 = · · · . It follows recursively
that the same holds for the Hodge to De Rham spectral sequence for Y .
In particular, it degenerates. But more is true. The map f⇤ on the level of
spectral sequences induces an injection F pHk(Y ) ,! F pHk(X) and since
f⇤ commutes with complex conjugation, we conclude that F pHk(Y ) meets
F k�p+1Hk(Y ; C) only in {0} and so the hypothesis of Prop. 2.27 is satisfied
and the result follows upon applying Corollary 2.28. ut

By Hironaka’s theorem [Hir64] the indeterminacy locus of a meromorphic
map X 99K Y can be eliminated by blowing up. Since the blow up of a Kähler
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manifold is again Kähler (see [Kod54, Sect. 2, Lemma 1]) we can apply the
previous theorem to a manifold bimeromorphic to a Kähler manifold.

Corollary 2.30. Let X be a compact complex manifold bimeromorphic to a
Kähler manifold. Then Hk(X; C) admits a strong Hodge decomposition. This
is in particular true for a (not necessarily projective) compact algebraic mani-
fold. In particular, the previous theorem remains true when X is only bimero-
morphic to a Kähler manifold.

2.3.3 Hodge Complexes and Hodge Complexes of Sheaves

Comparison between complexes should take place in suitable derived cate-
gories. We prefer however to give explicit morphisms realizing these compar-
ison morphisms. To fix ideas we introduce the following definitions.

Definition 2.31. Let K•, L• two bounded below complexes in an abelian
category. A pseudo-morphism between K• and L• is a chain of morphisms
of complexes

K•
f

�! K•

1

qis

⇠ ��K•

2

qis

⇠��! · · ·
qis

⇠��!K•

n+1
= L•.

It induces a morphism in the derived category. We shall denote such a pseudo-
morphism by

f : K•9999KL•.

If also f is a quasi-isomorphism we speak of a pseudo-isomorphism. It
becomes invertible in the derived category. We denote these by

f : K•

qis

⇠9999K L•.

A morphism between two pseudo-morphisms K•
f

�! K•
1

qis

⇠ �� · · ·
qis

⇠��!K•
m

and
L•

g

�! L•
1

qis

⇠ �� · · ·
qis

⇠��!L•
m

consists of a sequence of morphism Kj ! Lj , j =
1, . . . ,m such that the obvious diagrams commute. Note that such morphisms
are only possible between sequences of equal length.

Definition 2.32. 1) Let R a noetherian subring of C such that R ⌦Q is a
field (mostly R will be Z or Q). An R-Hodge complex K• of weight m
consist of
– A bounded below complex of R-modules K•

R
such that the cohomology

groups Hk(K•

R
) are R-modules of finite type,

– A bounded below filtered complex (K•

C
, F ) of complex vector spaces

with di↵erential strictly compatible with F and a
– comparison morphism ↵ : K•

R
9999KK•

C
, which is a pseudo-morphism

in the category of bounded below complexes of R-modules and becomes
a pseudo-isomorphism after tensoring with C.

↵⌦ id : K•

R
⌦ C

qis

⇠9999K K•

C
,
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and such that the induced filtration on Hk(K•

C
) determines an R-Hodge

structure of weight m + k on Hk(K•

R
).

Its associated Hodge-Grothendieck characteristic is

�Hdg(K•) :=
X

k2Z

(�1)k
⇥
Hk(K•)

⇤
2 K0(hs

R
).

2) Let X be a topological space. An R-Hodge complex of sheaves of
weight m on X consists of the following data
– A bounded below complex of sheaves of R-modules K•

R
such that the hy-

percohomology groups H
k(X,K•) are finitely generated as R-modules,

– A filtered complex of sheaves of complex vector spaces {K•

C
, F} and

a pseudo-morphism ↵ : K•

R
9999KK•

C
in the category of sheaves of R-

modules on X inducing a pseudo-isomorphism (of sheaves of C-vector
spaces)

↵⌦ id : K•

R
⌦ C

qis

⇠9999K K•

C
,

and such that the R-structure on H
k(K•

C
) induced by ↵ and the filtration

induced by F determine an R-Hodge structure of weight k + m for all
k. Moreover, one requires that the spectral sequence for the derived
complex R� (X,K•

C
) (see (B–12) with the induced filtration

H
p+q(X,Grp

F
K•

C
) =) H

p+q(X,K•

C
)

degenerates at E1 (by Lemma A.42 this is equivalent to saying that the
di↵erentials of the derived complex are strict).

3) A morphism of Hodge complexes (of sheaves) of weight m, consists of
a triple(hR, hC, ) where hR is a morphism of (of sheaves of) R-modules,
hC a homomorphism of (sheaves of) C-vector spaces and  : ↵ ! � is a
morphism of pseudo-morphisms.

The notions of a Hodge complex and that of a Hodge complex of sheaves are
related in the following way.

Proposition 2.33. Given an R-Hodge complex of sheaves on X of weight m,
say

K• = (K•

R
, (K•

C
, F ), ↵) ,

any choice of representatives for the triple

R�K• = (R� (K•

R
), (R� (K•

C
, F ), R� (↵))

yields an R-Hodge complex. With aX : X ! pt the constant map, we have

�Hdg(R� (K•)) = [R(aX)⇤K•] 2 K0(hs
R
).

Here we view R(aX)⇤K•, a complex of sheaves over the point pt, as a complex
of R-modules whose (finite rank) cohomology groups H

k(X,K•) are R-Hodge
structures so that the right hand side makes sense in K0(hs

R
).
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Example 2.34. The existence of a strong Hodge decomposition for Kähler man-
ifolds (Example 2.25) in fact tells us that for X a compact Kähler manifold,
the constant sheaf Z

X
, the holomorphic De Rham complex ⌦•

X
with the trivial

filtration � together with the inclusion Z
X

,! ⌦•

X
(which gives the pseudo-

isomorphism C
X
! ⌦•

X
) is an integral Hodge complex of sheaves of weight

0. The same is true for any complex manifold bimeromorphic to a Kähler
manifold. This complex will be called the Hodge-De Rham complex of
sheaves on X and be denoted by

Hdg•(X) = (Z
X

, (⌦•

X
, �), Z

X
,! ⌦•

X
).

Taking global sections on the Godement resolution gives R�Hdg•(X), the
canonically associated De Rham complex of X with Hodge-Grothendieck
characteristic

�Hdg(X) =
X

k2Z

(�1)k
⇥
Hk(X)

⇤
= [R(aX)⇤ZHdg

X
] 2 K0(hs). (II–11)

Lemma-Definition 2.35. 1) For an R-Hodge complex of sheaves K• =
(K•

R
, (K•

C
, F ), ↵) of weight m, and k 2 Z we define the k-th Tate-twist by

K•(k) :=(K•

R
⌦ Z(2⇡i)k, (K•

C
, F [k]), ↵ · (2⇡i)k).

It is an R-Hodge sheaf of weight m� 2k. This operation induces the Tate-
twist in hypercohomology

H
`(X,K•

C
(k)) = H

`(X,K•

C
)(k).

A similar definition holds for K•(k) where K• is an R-Hodge complex.
2) We define the shifted complex by

K•[r] :=(K•

R
[r], (K•

C
[r], F [r]), ↵[r]).

It is a Hodge complex of sheaves of weight m + r A similar definition holds
for K•[r] where K• is an R-Hodge complex.

2.4 Refined Fundamental Classes

We recall (Proposition 1.14) that for any irreducible subvariety Y of codi-
mension d in a compact algebraic manifold X the integral fundamental class
cl(Y ) 2 H2d(X) has pure type (d, d). This means that the fundamental class
belongs to the d-th Hodge filtration level. So we can also define a fundamen-
tal Hodge cohomology class

clHdg(Y ) 2 F dH2d(X; C) = H
2d(X,F d⌦•

X
)
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and the integral class maps to it under the inclusion Z ,! C. To keep track
of various powers of 2⇡i introduced when integrating forms, it is better to
replace this inclusion by

✏d : Z(d) ,! C (II–12)

and we consider the fundamental class as a class cl(Y ) 2 H2d(X, Z(d)) which,
under ✏d, maps to the image of the Hodge class in H2d(X; C). This is sum-
marized in the following diagram

clHdg(Y ) clC(Y )
\? \?

H
2d(X,F d⌦•

X
) ,! H

2d(X,⌦•

X
) = H2d(X; C)x??(✏

d
)⇤

H2d(X; Z(d)) 3 cl(Y )

6

-`

-

Remark. There is a much more intrinsic reason to consider cl(Y ) as a class
inside H2d(X, Z(d)) rather than as an integral class. The reason is that the
only algebraically defined resolution of C is the holomorphic De Rham com-
plex ⌦•

X
and the only algebraically defined fundamental class is coming from

Grothendieck’s theory of Chern classes. To algebraically relate the first Chern
class which is naturally living in H1(O⇤

X
) = H

2(X, 0! O⇤
X
! 0) to a class in

H2(X, C) = H
2(X,⌦•

X
) one uses d log : O⇤

X
! ⌦1

X
and zero else. This misses

out the factor 2⇡i which is inserted in the C1 De Rham theory. It follows that
cl(Y ) as defined in this way is no longer integral, but has values in Z(d). See
[DMOS, I.1] where this is carefully explained. This remark becomes relevant
when one wants to compare fundamental classes for algebraic varieties defined
over fields k ⇢ C when one changes the embedding of k in C.

Remark 2.36. Contininuing the preceding Remark, suppose that X is a non-
singular algebraic variety defined over a field k of finite transcendence degree
over Q. Any embedding � : k ,! C defines a complex manifold X(�) and a codi-
mension d cycle Z on X defines a fundamental class cl(�)(Z) 2 H2d(X(�); C)
which is rational in the sense that it belongs to H2d(X(�); 2⇡iQ). On the
other hand, we have the algebraic De Rham groups Hm

DR
(X/k) which are

k-spaces, they are the hypercohomology groups of the algebraic De Rham
complex ⌦•

X/k
. These compare to complex cohomology through a canonical

comparison isomorphism

◆� : Hm

DR
(X/k)⌦�,k C

⇠�! Hm(X(�); C)

and under this isomorphism for m = 2d the class cl(Z) on the right corre-
sponds to a class

clB(Z) 2 H2d

DR
(X/k)⌦ (2⇡i)d :=H2d(X)(d).

Then the class ◆� clB(Z) is rational in the above sense. This motivates the
definition of an absolute Hodge class:
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Definition 2.37. Let X be a non-singular algebraic variety defined over a
field k of finite transcendence degree over Q. A class � 2 H2d(X)(d) is abso-
lute Hodge if for all embeddings � : k ,! C the image ◆�(�) 2 H2d(X(�); C)
is rational.

If such a class � has the property that ◆�(�) is rational for just one embedding
we speak of a Hodge class. These come up in the Hodge conjecture 1.16 for
a complex projective variety. To explain this, note that such a variety is of
course defined over a given subfield k of C of finite transcendence degree over
Q and there is a preferred embedding k ,! C.

Deligne’s “hope” is that like the algebraic cycle classes, all such Hodge
classes are absolute Hodge. This has been verified only for abelian varieties
[DMOS].

We now continue our study of refined cycle classes in the setting of local
cohomology, the main result being as follows.

Theorem 2.38. Let X be a compact algebraic manifold and let Y ⇢ X be an
irreducible d-dimensional subvariety. Then the following variants of interre-
lated fundamental classes exist:

1) There is a refined Thom class

⌧Hdg(Y ) 2 H
2d

Y
(X, F d⌦•

X
)

whose image under the map H
2d

Y
(X,F d⌦•

X
) ! H

2d

Y
(X,⌦•

X
) = H2d

Y
(X; C)

coincides with the image under the map (II–12) of the Thom class ⌧(Y ) 2
H2d

Y
(X, Z(d)).

2) There is a class ⌧d,d 2 Hd

Y
(X, ⌦d

X
) which is the projection of the refined

Thom class.
3) Forgetting supports, the class ⌧Hdg(Y ) maps to clHdg(Y ).
4) The various classes in this construction are related as follows

⌧d,d(Y )) a ⌧Hdg(Y ) 7�! ⌧(Y )??y
??y

??y
cld,d(Y )  a clHdg(Y ) 7�! clC(Y )

and where the elements come from the commutative diagram

Hd

Y
(⌦d

Y
) �� H

2d

Y
(X, F d⌦•

X
) ��! H2d

Y
(X; C)??y

??y
??y

Hd(⌦d

X
)  �� H

2d(X, F d⌦•

X
) = F dH2d(X; C) ��! H2d(X; C)

We start with a localizing tool. Let F be any sheaf on X. The assignment
U 7! Hk

Y
(U,F) defines a presheaf on X whose associated sheaf is denoted by

Hk

Y
(F). These sheaves are related to the local cohomology groups through a

spectral sequence
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Er,s

2
= Hr(X, Hs

Y
(F)) =) Hr+s

Y
(X,F) (II–13)

which is the second spectral sequence associated to the functor of taking
sections with support in Y .

Lemma 2.39. Let X be a complex manifold, Y ⇢ X a codimension c subva-
riety and E a locally free sheaf on X. Then

1) the cohomology sheaf satisfies

Hq

Y
(E) = 0, q < c;

2) there is an isomorphism

Hc

Y
(X, E) ⇠�! H0(X, Hc

Y
(E)).

Proof. For a proof of the first assertion see [S-T, Prop. 1.12]. The second
assertion then follows from the spectral sequence (II–13). ut

We state a consequence for hypercohomology. We assume that we have a
complex K• of locally free sheaves on X and we consider the first spectral
sequence with respect to the trivial filtration ��p = F p for the functor of
hypercohomology with supports in Y whose E1-terms are

Eq,r

1
= Hq

Y
(X,F sKr) =) H

q+r

Y
(F sK•

X
), F sKr =

⇢
Kr if r � s

0 if r < s.

We find:

Corollary 2.40. For a codimension c subvariety Y ⇢ X, we have

H
m

Y
(X, F sK•) = 0, m < s + c

and
H

s+c

Y
(X, F sK•) ⇠= H0(X, Hc

Y
(X,Ks)).

Proof of Theorem 2.38. Step 1: Reduction to the case where Y is a smooth
subvariety.

We let Yreg, Ysing be the regular locus, respectively the singular locus of Y
and we put

X0 :=X � Ysing

Let us combine the usual exact sequences for cohomology with support to-
gether with the excision exact sequences (B–36) to a commutative diagram

H
2d

Ysing
(X,F d⌦•

X
)!H

2d

Y
(X,F d⌦•

X
) ! H

2d

Yreg
(X0, F d⌦•

X
)! H

2d+1

Ysing
(X,F d⌦•

X
)����

??yr

??yrreg

����
H

2d

Ysing
(X,F d⌦•

X
)! H

2d(X, F d⌦•

X
)! H

2d(X0, F d⌦•

X
) ! H

2d+1

Ysing
(X,F d⌦•

X
).
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In this diagram the first terms on the left vanish by Prop. 2.40. So one can
define a unique Hodge class clHdg(Yreg) 2 H

2d(X0, F d⌦•

X
) which comes from

the Hodge class of the pair (X, Y ). A diagram chase then shows that one can
reduce the construction of a Thom class to the smooth case (X0, Yreg).

In what follows we are going to construct a refined Thom class for
(X0, Yreg) which maps to the usual Thom class for this pair. This su�ces
to complete the proof, in view of the commutative diagram

H
2d

Yreg
(X0, F d⌦•

X
) ��! H

2d

Yreg
(X0, ⌦•

X0) = H2d

Yreg
(X0; C)??y

??y
H

2d(X0, F d⌦•

X0) ��! H
2d(X0, ⌦•

X0) = H2d(X0; C)

Step 2: Construction of ⌧d,d(Y ) 2 Hd

Y
(X, ⌦d

X
) for Y a complete intersection

in a smooth (not necessarily compact) algebraic manifold X.
Let us cover X by Stein open sets {U↵}, ↵ 2 I. Suppose that U↵\Y is given

by f (k)

↵ = 0, k = 1, . . . , d. The open sets Uk

↵
:=U↵ � {f (k)

↵ = 0}, k = 1, . . . , d
form an acyclic covering of U↵ � Y \ U↵. Consider the Čech (d� 1)-cocycle

�
U1

↵
\ · · · \ Ud

↵

�
7�! ⌘↵ :=

h
d log f (1)

↵
^ · · · ^ d log f (d)

↵

i
.

If we take other equations it is easy to write down a (d � 2) co-chain whose
coboundary gives the di↵erence. Under the isomorphism

Hd�1(U↵ � (Y \ U↵), ⌦d

X
) ⇠�! Hd

Y
(U↵, ⌦d

X
)

its class maps to a class c↵ 2 Hd

Y
(U↵, ⌦d

X
) which is therefore independent of

the choice of equations for Y . Hence the c↵ patch together to a section of the
sheaf Hd

Y
(⌦d

Y
). We then apply Lemma 2.39.

Step 3: Lifting of the class ⌧d,d(Y ) to a class ⌧Hodge(Y ) 2 H
2d

Y
(X,F d⌦•

X
).

To do this, we consider the long exact sequence in hypercohomology with
supports in Y associated to the exact sequence of complexes

0! F d+1⌦•

X
! F d⌦•

X
! ⌦d

X
[�d]! 0.

It reads

H
2d

Y
(X,F d+1⌦•

X
)! H

2d

Y
(X,F d⌦•

X
)! Hd

Y
(X,⌦d

X
) @�! H

2d+1

Y
(X, F d+1⌦•

X
)�� ��

o

0 H0(X,Hd

Y
(X, ⌦d+1

X
)).

Here we use Cor. 2.40. It follows that to calculate @(⌧d,d(Y )), it su�ces to do
this locally. We use the same notation as in the previous step. So @⌧d,d(Y )|U↵

is represented by the co-cycle
�
U1

↵
\ · · · \ Ud

↵

�
7! d⌘↵ = d

h
d log f (1)

↵
^ · · · ^ d log f (d)

↵

i
= 0.
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So @(⌧d,d(Y )) = 0 and there is a unique lift of this class to ⌧Hodge(Y ) 2
H

2d

Y
(X,F d⌦•

X
).

Step 4: Proof that the class ⌧Hodge(Y ) 2 H
2d

Y
(X, F d⌦•

X
) maps to the Thom

class ⌧C(Y ) 2 H2d

Y
(X; C).

Recall (B.2.9) that Poincaré-duality implies that ⌧C(Y ) generates local
cohomology. Suppose that ⌧Hodge(Y ) maps to m⌧C(Y ). To show that m = 1
a local computation su�ces. Hence, by functoriality, we can reduce to the
case of the origin in C

d. Again, by functoriality we can further restrict down
to a complex line passing through the origin. Next, we look at the closed
1-form dz/z on C � {0}. It defines a De Rham class in H1(C � {0}) which
generates the first integral cohomology of H1(C� {0}) under the embedding
✏ : Z(1) ! C. This is simply the residue formula. The corresponding image
@(dz/z) 2 H2

0
(C) generates integral cohomology with support in 0. It follows

that m = 1. ut

Remark 2.41. This construction also provides us with refined Thom classes
for cycles Y =

P
niYi of codimension d with support in |Y | =

S
i
Yi. Indeed,

one merely uses the isomorphism

H2d

|Y |
(X;F d⌦•

X
) ⇠=

M

i

H2d

Yi
(X;F d⌦•

X
)

coming from restriction and puts

⌧Hdg(Y ) =
X

i

ni⌧Hdg(Yi).

To verify that restriction induces an isomorphism, one first remarks that this
is obvious if the Yi are disjoint, while the general case can be reduced to this
case by comparing cohomology with support in |Y | with cohomology with
support in

S
i
Yi � (Yi

T S
j 6=i

Yj) using the excision exact sequence and the
previous vanishing results.

2.5 Almost Kähler V -Manifolds

In this section we shall see that the Hodge decomposition is valid for the
cohomology groups of a class of varieties that are possibly singular.

A V -manifold of dimension n is a complex space which can be covered
by charts of the form Ui/Gi, i 2 I, with Ui ⇢ C

n open and Gi a finite group
of holomorphic automorphisms of Ui.

An almost Kähler V -manifold is a V -manifold X for which there exists
a manifold Y bimeromorphic to a Kähler manifold and a proper modification
f : Y ! X onto X. Here we recall that a proper modification is a proper
holomorphic map which induces a biholomorphic map over the complement
of a nowhere dense analytic subset.
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Examples 2.42. 1) A global quotient of a complex manifold by a finite group
of holomorphic automorphisms. An important example is the case of a
weighted projective space P(q0, . . . , qn), where the qj are non-negative
integers, the weights. It is defined as the quotient of P

n by the coordinate-
wise action of the product µq0

⇥ · · · ⇥ µqn of the qj-th roots of unity µj ,
j = 0, . . . , n. It can also be described as the quotient of C

n+1 � {0} by
the action of C

⇥ given by t · (z0, . . . , zn) = (tq0z0, . . . , tqnzn). The natural
quotient map is denoted

p : C
n+1 � {0}! P(q0, . . . , qn).

The subgroup µ(qj) ⇢ C
⇥ stabilizes Vj = {zj = 1} and p identifies p(Vj)

with the quotient Vj = Uj/µ(qj). These together form the standard open
a�ne covering of P(q0, . . . , qn). Without loss of generality one may assume
that the qj have no factor in common and we may even assume that this is
true for any (n� 2)-tuple of weights.
A subvariety X of P(q0, . . . , qn) is called quasi-smooth if the cone p�1X ⇢
C

n+1 � {0} is smooth. In other words, the only singularity of the corre-
sponding a�ne cone is the vertex. It is not hard to see that a quasi-smooth
subvariety of weighted projective space is a V -manifold.
2) The quotient of any torus by the cyclic group of order two generated by
the involution x 7! �x, a Kummer variety.
3) A complete complex algebraic V -manifold admits a resolution of singular-
ities Y and by Chow’s lemma, Y is bimeromorphic to a smooth projective
variety. It follows that a complete complex algebraic V -manifold is an al-
most Kähler V -manifold
4) Let us refer to [Oda] for the subject of toric varieties. We only say that
to each convex polytope ⇧ with integral vertices spanning R

n as a vector
space there corresponds an n-dimensional toric variety X⇧ and vice-versa.
Each vertex v determines the cone

S
n�1

n⇧v, where ⇧v is the polytope ⇧
translated over �v. If this cone has exactly n 1-dimensional faces it is called
simplicial and ⇧ is simplicial if all ⇧v are simplicial. The singularities are
in general rather bad, but if ⇧ is simplicial, X⇧ is a V -manifold.

The main result is

Theorem 2.43. Let X be an almost Kähler V -manifold. Then Hk(X; Q) ad-
mits a Hodge structure of weight k.

Before we can prove this theorem, we need some preparations. First we
note that locally a V -manifold is obtained as the quotient of a ball B by a finite
group G of linear unitary automorphisms (see [Cart57, proof of Theorem 4]).
The quotient B/G is smooth if and only if G is generated by generalized reflec-
tions (elements whose fixed locus is a hyperplane). In general, if we let Gbig the
subgroup of G generated by the generalized reflections and Gsmall = G/Gbig,
the smooth quotient B0 = B/Gbig is acted upon by Gsmall with quotient B/G.
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This description also shows that X is a rational homology manifold and hence
Poincaré-duality holds with respect to rational coe�cients.

Next, we need to digress on singularities. Recall that a module M over
a local noetherian local ring (R,m) of Krull dimension n is called Cohen-
Macaulay if it has a regular sequence of maximal length n (an ordered se-
quence (t1, . . . , tm) of elements tj 2 m is called an M -regular sequence if
each of the tj is not a zero-divisor in M/(t1, . . . , tj�1)M). A local ring is called
Cohen-Macaulay if it is Cohen-Macaulay as a module over itself.

A (germ of a) singularity (X, x) is called Cohen-Macaulay if OX,x is a
Cohen-Macaulay ring.
Examples 2.44. 1) Smooth points are of course Cohen-Macaulay.

2) Reduced curve singularities are Cohen-Macaulay.
3) Quotient singularities are quotients of a germ of smooth manifold (Y, y)
by the action of a finite group G of holomorphic automorphisms. These are
Cohen-Macaulay, since the local ring at the point x 2 X = Y/G corre-
sponding to y is the ring of G-invariants OG

Y,y
of OY,y and hence a direct

factor of the Cohen-Macaulay ring OY,y which itself is Cohen-Macaulay
over OG

Y,y
.

By [R-R-V], every equi-dimensional complex analytic space X of dimension
n has a dualizing complex !•

X
which actually is an object in the derived

category of bounded below complexes of OX -modules. It can be defined locally
as follows. Suppose U ⇢ X is an open subset embeddable into an open set
V ⇢ C

N , say i : U ,! V . Then the complex

!•

U
:=R HomOV (OU , ⌦N

V
[N ])[�n]

is supported on U and is actually independent of the choice of V .
The dualizing complex intervenes in a duality statement of which we only

need some special cases:
Theorem 2.45. 1) Serre-Grothendieck duality: Let X be a compact

complex space. For any OX-coherent sheaf F we have

Hq(X,F)_ = Extn�q(F , !•

X
).

2) Let f : Z ! X be a finite morphism between complex spaces. For any
OZ-coherent sheaf F we have

f⇤Exti
OZ

(F , !•

Z
) = Exti

OX
(f⇤F , !•

X
).

It can be shown that for a normal Cohen-Macaulay space X with singular
locus Xsing and inclusion i : Xreg = X �Xsing ,! X of the smooth locus, the
dualizing complex is actually a sheaf

!X := i⇤⌦
n

Xreg

viewed as a complex placed in degree 0. In the special case of a V -manifold X,
this sheaf, or more precisely, the complex i⇤⌦•

Xreg
can be described in terms

of the local geometry of X:
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Lemma 2.46. Let B ⇢ C
n be an open ball and let G be a finite unitary

subgroup acting on B. Let p : B ! X = B/G be the quotient map. Then we
have an equality of complexes

⌦̃•

X
:= i⇤⌦

•

Xreg
= (p⇤⌦•

B
)G.

In particular, ⌦̃•

X
is a resolution of the constant sheaf C

X
.

Proof. If G = Gsmall the subvariety p�1Xsing has codimension � 2 in B and
p induces the finite unramified cover q : B0 = B � p�1Xsing ! Xreg. Then
⌦•

Xreg
= (q⇤⌦•

B
)G. Let j : B0 ,! B be the inclusion. The assertion follows

from
i⇤⌦

•

Xreg
= (i⇤q⇤⌦•

B
)G = (p⇤j⇤⌦•

B0)G = (p⇤⌦•

B
)G,

where the last equality follows since q�1Xsing has codimension � 2 in B.
If G = Gbig the map p is ramified along hypersurfaces and locally on

B, the map is given by (z1, z2, . . . , zn) 7! (ze

1
, z2, . . . , zn). Remembering that

X = Xreg, as before we have ⌦•

X
= (p⇤⌦•

B
)G and the result follows in this

case as well.
In the general case, we factor the map p into B

p
0

��! B/Gbig

p
00

��! B/G and
we use that

(p⇤⌦•

B
)G =

�
p00
⇤
(p0
⇤
⌦•

B
)Gbig

�Gsmall

.

The last assertion follows from the corresponding assertion on B upon taking
G-invariants. ut

If we apply the relative duality statement above to the quotient map p,
we find

Corollary 2.47. Let X be an n-dimensional V -manifold. Then

1) HomOX (⌦̃p

X
, !X) = ⌦̃n�p

X
for all p;

2) Exti
OX

(⌦̃p

X
, !X) = 0 for all p and all i > 0.

Using the local to global spectral sequence for Ext we conclude from this
that

Extp

OX
(⌦̃q

X
, !X) = Hp(X, ⌦̃n�p

X
).

Combining this with Serre-Grothendieck duality this shows

Corollary 2.48. Hq(X, ⌦̃p

X
) is dual to Hn�q(X, ⌦̃n�p

X
).

Proof of Theorem 2.43:. Since ⌦̃•

X
is a resolution of the constant sheaf C

X
,

the spectral sequence in hypercohomology now reads

Epq

1
= Hq(X, ⌦̃q

X
) =) Hp+q(X; C).

Let f : Y ! X be a proper modification with Y bimeromorphic to a Kähler
manifold. There is a natural morphism of sheaf complexes
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⌦̃•

X
! f⇤⌦

•

Y

which can be seen to be an isomorphism. The local calculation showing this
can be found in [Ste77a, Lemma 1.11]. It follows that there is a morphism
f⇤ between the above spectral sequence and the Hodge-to De Rham spectral
sequence for Y . We claim that f⇤ is already injective on the level of the E1-
terms. To see this, we use the previous Corollary: for every non-zero ↵ 2 Ep,q

1
,

there exists a � 2 En�p,n�q

1
with ↵^� 6= 0. Then f⇤↵^ f⇤� = f⇤(↵^�) 6= 0,

since f⇤ is an isomorphism in the top cohomology. It follows that ↵ is non-
zero and so f⇤ is injective. But then the spectral sequence we started with
degenerates at E1 as well and f⇤ induces an isomorphism

Hq(X, ⌦̃p

X
) ⇠�! Hp,q(Y ) \ f⇤Hp+q(X; C).

We thus obtain a Hodge decomposition on Hk(X; C) making f⇤ a morphism
of Hodge structures.

Historical Remarks. The group theoretic point of view of the notion of Hodge
structure is due to Mumford and has been exploited by Deligne in his study of
absolute Hodge cycles (see the monograph [DMOS]). It has been used as a tool in
approaching the Hodge conjecture on abelian varieties. See also the Appendix by
Brent Gordon in [Lewis].

The Hodge complexes of sheaves are one of the basic building blocks for later con-
structions of mixed Hodge structures in geometric situations. This notion is inspired
by Deligne [Del71], [Del74] but is di↵erent from his in that we prefer working with
(filtered) complexes of sheaves instead of classes of these up to quasi-isomorphism.
The algebraic version of the @@-Lemma is a variation of an argument due to Deligne
[Del71, Prop. 4.3.1]. The Hodge theoretic study of V -manifolds has been carried out
in [Ste77b]. The notion of V -manifold is due to Satake [Sata56].

The Hodge theoretic aspects of the fundamental class have been extensively
studied by El Zein in [ElZ].
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Abstract Aspects of Mixed Hodge Structures

We continue to study the more formal aspects of Hodge theory, this time for the
case of mixed Hodge structures. In § 3.1 the basic definitions are given; the Deligne
splittings are introduced which make it possible to prove strictness of morphisms of
mixed Hodge structures and to show that the category of mixed Hodge structures
is abelian.

The complexes which come up in constructions for mixed Hodge structures have
two filtrations and any one of these defines a priori di↵erent natural filtrations on the
terms of the spectral sequence for the other filtration. We compare these in § 3.2. This
study reveals (§ 3.3) that certain abstract properties built in the definition of a mixed
Hodge complex of sheaves guarantee that their hypercohomology groups carry a
mixed Hodge structure. If one can interpret a geometric object as a hypercohomology
group of a complex underlying a mixed Hodge complex of sheaves, this object carries
a mixed Hodge structure. This is the technique which will be employed in subsequent
chapters.

Given a morphism of mixed Hodge structures, there is no canonical way to
put the structure on the cone of the morphism. However, as we show in § 3.4, for
a morphism of mixed Hodge complexes of sheaves the mixed cone is a canonical
mixed Hodge structure on the cone of the underlying morphism of complexes of
sheaves. It depends explicitly on the comparison morphisms, but this is built in in
the definitions. The mixed cone construction will often be used later. As an example
of its geometric significance we explain how to put a mixed Hodge structure on
relative cohomology of a pair of compact smooth Kähler manifolds.

In § 3.5 we return to the categorical study of mixed Hodge structures. We first
study extensions of two mixed Hodge structures and after that the higher Ext-
groups. The category of mixed Hodge structures is abelian, but it does not have
enough injectives; we use Verdier’s direct approach (§ A.2.2) to the derived category.
The higher Ext-groups turn out to be zero if R = Z or if R is a field. This is related to
Beilinson’s construction of absolute Hodge cohomology as we shall briefly indicate.
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3.1 Introduction to Mixed Hodge Structures: Formal

Aspects

We let R be a noetherian subring of C such that R ⌦ Q is a field and we let
VR be a finite type R-module.

Definition 3.1. An R-mixed Hodge structure on VR consists of two fil-
trations, an increasing filtration on VR⌦R (R⌦Q), the weight filtration W•

and a decreasing filtration F • on VC = V ⌦R C, the Hodge filtration which
has the additional property that it induces a pure (R ⌦ Q)-Hodge structure
of weight k on each graded piece

GrW

k
(VR ⌦Z Q) = Wk/Wk�1.

We say that the R-mixed Hodge structure is graded-polarizable if the
GrW

k
(VR ⌦Z Q) are pure, polarizable (R⌦Q)-Hodge structures.

The mixed Hodge structure on V defines a class in the Grothendieck group
(see Def. A.4.3) of pure R-Hodge structures

[V ] :=
X

k2Z

⇥
GrW

k

⇤
2 K0(hs

R
). (III–1)

The Hodge numbers of these pure Hodge structures

hp,q(V ) :=dimC Grp

F
GrW

p+q
(VC)

are the Hodge numbers of the mixed Hodge structure. These are the coef-
ficients of the Hodge-Euler polynomial

eHdg(V ) :=Phn([V ]) =
X

p,q2Z

hp,q(V )upvq 2 Z[u, v, u�1, v�1]. (III–2)

A morphism f : VR ! V 0
R of mixed Hodge structures is an R-linear

map which is compatible with the two filtrations W and F . In view of Prop. 2.4
the morphism f induces for all m 2 Z morphisms GrW

m
(f) : Grm

W
V ! GrW

m
V 0

of Hodge structures.

Examples 3.2. 1) A Hodge structure as defined in § 2.1.1 is a direct sum of
Hodge structures of various weights and as such it is also a mixed Hodge
structure. By definition, this is a mixed Hodge structure split over R.
By § 2.1 Hodge structures split over R are precisely the finite-dimensional
representation of the group S.
2) Let H,H 0 be two R-mixed Hodge structures. Then Hom(H,H 0) and H⌦
H 0 are R-mixed Hodge structures. To see this, we put

Hom(H,H 0)R = HomR(HR, H 0

R
)

(H ⌦H 0)R = HR ⌦R H 0

R
.
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Let R stand for Q or C. As we have seen in (see Def. (2.3) in Chap. 2) for
any two filtrations T , respectively T 0 on HR, respectively H 0

R
we have their

multiplicative extensions to HomR(HR, H 0

R
) and HR ⌦R H 0

R
. Explicitly,

T p HomR(HR, H 0

R
) = {f : HR ! H 0

R
| fTnHR ⇢ (T 0)n+pH 0

R
8n}

T p(HR ⌦R H 0

R
) =

X

m

TmHR ⌦ (T 0)p�mH 0

R
⇢ HR ⌦R H 0

R

This procedure enables us to put Hodge, respectively weight filtrations
on HomC(HC, H 0

C
), HC ⌦ H 0

C
, respectively HomQ(HQ, H 0

Q
), HQ ⌦ H 0

Q
. It

is straightforward to check that this indeed defines mixed Hodge structures
and that the same formulas (II–3) and (II–4) for the Hodge Euler polyno-
mials in the pure setting are valid. In a similar fashion, one can put mixed
Hodge structures on the tensor algebras TH, TH⌦TH_, the symmetric al-
gebra SH and the exterior algebra ⇤H. The multiplication in these algebras
is easily seen to be a morphism of mixed Hodge structures.
3) (Tate twists) Let H = (HZ, F, W ) be a mixed Hodge structure. We define

H(m)Z := (2⇡i)2m ·HZ

Wk(H(m)) := Wk+2mH
F p(H(m)) := F p+mH.

9
=

; (III–3)

Then H(m) is also a mixed Hodge structure, the m-th Tate twist of H.

A morphism f : (V, F )! (V 0, F 0) of filtered vector spaces induces linear maps
Grp

F
(f) : Grp

F
V ! Grp

F
V 0 on the gradeds, but even if f is injective, the maps

Grp

F
(f) need not be injective. However, if f is strict, this is the case. Recall

(A–26) that strictness of f means

f(V ) \ F pV 0 = f(F pV ) for all p. (III–4)

Example 3.3. Every morphism of Hodge structures, using the associated Hodge
filtrations, gives a morphism of filtered complex vector spaces. The existence of
the Hodge decomposition implies that such a morphism is strict (with respect
to the Hodge filtration).

To prove strictness of morphisms of mixed Hodge structures with respect to
both the Hodge and the weight filtrations we would like to have a Hodge
decomposition in the mixed case. In general there is no such “Hodge decom-
position” of VC, but we may introduce the (p, q)-component of the pure Hodge
structure GrW

p+q
VC:

V p,q :=[GrW

p+q
VC]p,q, dimC V p,q = hp,q(V ), (III–5)

so that VC
⇠=

L
V p,q as complex vector spaces. The components on the right

hand side are of course only subquotients and we would like to find subspaces
of VC mapping isomorphically to these subquotients. Formally, we look for a
bigrading V =

L
Jp,q of V such that
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W C

k
:= Wk ⌦ C =

L
p+qk

Jp,q

F p =
L

r�p
Jr,s

�
.

Suppose that moreover Jp,q = Jq,p holds for all p, q 2 Z. Then the direct sum
Vk =

L
p+q=k

Jp,q has a real structure; it is a weigh k real Hodge structure
and V =

L
Vk is a splitting of the mixed Hodge structure over R. In general

Jp,q need not be not the complex conjugate of Jq,p, but only modulo W C

p+q�1
.

We call such a bigrading a weak splitting of the real mixed Hodge
structure (V,W,F ). These do exist:

Lemma-Definition 3.4. The bigrading of VC given by the subspaces

Ip,q :=F p \Wp+q \
�
F q \Wp+q +

X

j�2

F q�j+1 \Wp+q�j

�

defines a weak a splitting of the real mixed Hodge structure, the Deligne
splitting.

Proof. Observe that Ip,q = F p \ F q \W C

p+q
mod W C

p+q�2
and so writing x 2

Ip,q accordingly as x = y + w, y 2 F p \ F q \W C

p+q
, w 2W C

p+q�2
we see that

x 2Wp+q�1 precisely when y 2Wp+q�1, But since F p \ F q \Grp+q�1

W
= {0}

because Grp+q�1

W
is a pure weight (p + q � 1) Hodge structure, it follows that

y 2 W C

p+q�2
and thus can be pulled into w. But then we apply the same

argument to x = w 2 F p\F q�1\W C

p+q�2
mod W C

p+q+3
to show w 2W C

p+q+3
.

Since the W -filtration is bounded below, we see that eventually x 2Wp+q�1,
implying x = 0. So Ip,q projects injectively to V p,q.

Next, we show that this projection is a surjection. Let [v] = [ū] 2 V p,q

where v 2 F p \W C

p+q
and u 2 F q \W C

p+q
. The equality [v] = [ū] in GrW

p+q

means v = ū+w with w 2Wp+q�1. We are going to modify the image of w in
GrW

p+q�1
. The fact that F induces a pure Hodge structure of weight p + q� 1

on this space yields a splitting GrW

p+q�1
= F p \W C

p+q�1
+ F q \W C

p+q�1
so

we can write w = v0 + u0 + w1, v0 2 F p \W C

p+q�1
, u0 2 F q \W C

p+q�1
and

w1 2W C

p+q�2
. Now set

v1 := v � v0 = ū + ū0 + w1

u1 :=u + u0 2 F q \W C

p+q
.

So [v1] = [v] = [ū] = [ū1] and v1 = u1 + w1. Next, we do the same thing with
w1 2 GrW

p+q�2
and we find v2 with [v] = [v1] = [v2] = [ū2], v2 = ū2 + w2,

u2 2 F q \ W C

p+q
+ F q�1 \ W C

p+q�2
and w2 2 W C

p+q�3
. Since Wn = 0 for

n su�ciently large, this process terminates when we have [v] = [un] with
un 2 F q \W C

p+q
+ F q�1 \W C

p+q�2
+ F q�2 \W C

p+q�3
+ · · · , vn 2 F p \W C

p+q

and ūn = vn so that this last element (which still projects to the original class
[v]) belongs to Ip,q as desired. ut
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Remark 3.5. It can be shown (see [C-K-S86]) that the Deligne splitting is
uniquely characterized by the following congruence:

Ip,q ⌘ Iq,p mod
M

r<p,s<q

Ir,s,

Corollary 3.6. Any morphism f : (V, F, W ) ! (V 0, F 0, W 0) of mixed Hodge
structures is strict (III–4), that is, any element of F 0p in the image of f comes
from F p and similarly for the weight filtration.

The proof is the same as in the pure case, using the Deligne splitting in-
stead of the Hodge decomposition. Indeed, any morphism of mixed Hodge
structures preserves the Deligne splitting by its very definition. As an imme-
diate consequence we have

Corollary 3.7. Any morphism of mixed Hodge structures which is an isomor-
phism on the level of R-modules is an isomorphism of mixed Hodge structures.

The following assertion is another immediate consequence of strictness.

Corollary 3.8. Let
H 0 ! H ! H 00

be an exact sequence of mixed Hodge structures. Then for all k, p the sequences

GrW

k
H 0

Q
! GrW

k
HQ ! GrW

k
H 00

Q

Grp

F
H 0

C
! Grp

F
HC ! Grp

F
H 00

C

Grp

F
GrW

k
H 0

C
! Grp

F
GrW

k
HC ! Grp

F
GrW

k
H 00

C

are also exact. If, moreover, the exact sequence extends to an exact sequence

0! H 0 ! H ! H 00 ! 0,

we have
[H] = [H 0] + [H 00] in K0(hs). (III–6)

If, in the preceding Corollary, H 0 ! H is an injective morphism, we say
that H 0 is a mixed Hodge substructure of H. In this case there is a
unique mixed Hodge structure on the quotient H/H 0 making the quotient
map H ! H/H 0 a morphism of mixed Hodge structures; it is called the
quotient mixed Hodge structure. If ' : H1 ! H2 is just any morphism
of mixed Hodge structures, the kernel Ker(�) is a mixed Hodge substructure
of H1, the image Im(�) is a mixed Hodge substructure of H2 and the natural
map

H/Ker(�)! Im(�)

is an isomorphism of mixed Hodge structures. All these facts follow from
the compatibility of the respective morphisms with the Deligne splitting. We
conclude:
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Corollary 3.9. The category of R-mixed Hodge structures is abelian. Its
Grothendieck group is the same as the Grothendieck group K0(hs

R
) for pure

R-Hodge structures.

For later reference we need the following criterion.

Criterion 3.10. Suppose that

0! H 0
f

�! H
g

�! H 00 ! 0

is an exact sequence of Q-vector spaces each endowed with an increasing
’weight filtration’ W and a decreasing ’Hodge filtration’ F . Suppose f and
g preserve both filtrations and that F and W induce mixed Hodge structures
on H 0 and H 00. Then F and W induce a mixed Hodge structure on H if and
only if f and g are strict with respect to both F and W .

Proof. Necessity follows from the preceding. Let us prove that the condition is
su�cient. Strict compatibility with the ’weight’ filtration implies that we get
induced exact sequences for the graded parts. By assumption, the extremes
carry a pure Hodge structure of the same degree and so we may suppose that
H 0, H 00 are pure of weight n and that f and g strictly preserve the Hodge
filtration. It su�ces to prove that F induces a pure Hodge structure on H of
weight n. Strictness implies that there is an induced exact sequence for the
’Hodge components’

0! (H 0)p,q
f

�! Hp,q
g

�! (H 00)p,q ! 0.

Since
L

p+q=n
(H 0)p,q = H 0 and

L
p+q=n

(H 00)p,q = H 00, we must also have
H =

L
p+q=n

Hp,q and hence F induces a pure Hodge structure of weight n
on the middle term. ut

3.2 Comparison of Filtrations

Here we consider two filtrations and we compare various spectral sequences.
The conventions we use for spectral sequences as well as certain basic facts
concerning those can be found in § A.3.

We let K• be a complex in an abelian category endowed with an increasing
filtration W and a decreasing filtration F . There are three filtrations on the
spectral sequence Er(K•, W ) induced by F .

– The first direct filtration Fdir obtained by considering Ep,q

r
as a sub-

quotient of Kp+q (recall that Ep,q

r
= Zp,q

r
/Bp,q

r
\ Zp,q

r
by definition). It is

the same filtration as the one given by

F p

dir
Er(K•, W ) = Im (Er(F p(K•, W ))! Er(K•, W )) .
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– The second direct filtration F ⇤

dir
obtained by writing the term Ep,q

r
=

Zp,q

r
/Bp,q

r
\ Zp,q

r
dually as a sub-object of a quotient of Kp+q, i.e. Ep,q

r
=

Ker (Kp+q/Bp,q

r
! Kp+q/(Zp,q

r
+ Bp,q

r
)). It is the same as the filtration

[F ⇤

dir
]pEr(K•, W ) = Ker (Er(K•, W )! Er((K•/F pK•, W ))) .

– The inductive filtration Find defined by induction on r. On the term
Ep,q

0
= GrW

�p
Kp+q we take the filtration Fdir = F ⇤

dir
(it is straightforward

to see this equality) and we define Find on Er+1 by considering Ep,q

r+1
as a

sub-quotient of Ep,q

r
.

Lemma 3.11 (Comparison of the three filtrations).
1) On E0 and E1 the three filtrations Fdir, F ⇤

dir
, Find coincide;

2) One has the inclusions

Fdir ⇢ Find ⇢ F ⇤

dir
;

3) Suppose that W is a biregular filtration. The filtration F on Ep,q

1
induced

by the isomorphism Ep,q

1
⇠= GrW

�p
Hp+q(K•) is related to the first and second

direct filtrations on E1 (obtained on Er by taking r big enough) by means
of the inclusions

Fdir(E1) ⇢ F (E1) ⇢ F ⇤

dir
(E1).

Proof. 1) This is a direct consequence of the definitions and we omit the proof.
2) Using the second description of the filtration Fdir, we see immediately
that the di↵erentials dr are compatible with Fdir and so there is an induced
filtration G on Er+1. We have

Ker
⇥
Er(F pK•, W )

dr��! Er(F pK•, W )
⇤

⇢ F p

dir

\
Ker

⇥
Er(K•, W )

dr��! Er(K•, W )
⇤
,

and Gp(Er+1) is a quotient of the right hand space. The left hand space gives
F p

dir
Er+1(K•, W ) ⇢ Er+1(K•, W ). So on the Er+1-terms we have Fdir ⇢ G.

Dually, the filtration F ⇤

dir
on Er induces G⇤ on Er+1 and G⇤ ⇢ F ⇤

dir
. The

assertion now follows by induction: if it is true on Er, we have on Er+1 that
Find interpolates G and G⇤ so that

Fdir(Er+1) ⇢ G(Er+1) ⇢ Find(Er+1) ⇢ G⇤(Er+1) ⇢ F ⇤

dir
(Er+1).

3) Consider the commutative diagram

W�p \ F iK•
j

i
p��! F iK•

??yki

??yji

W�pK•
jp��! K•.

Let H(↵) be the map induced by ↵ = ji, jp, ki, ji

p
in cohomology. The first

inclusion is a direct consequence of the fact that Im H(jp
�ki) ⇢ Im(H(ji)) \

Im(H(jp)) and the second is dual to it. ut
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Next we give Deligne’s criterion from [Del71, Theorem 1.3.16] , [Del73,
Proposition 7.2.8]:

Theorem 3.12. 1) Suppose that K• is equipped with two filtrations W and
F , the first one being biregular. Suppose that for r = 0, . . . , r0 the dif-
ferentials dr are strictly compatible with the inductive filtration. Then for
r  r0 + 1 the sequence of complexes

0! Er(F pK•, W )! Er(K•, W )! Er(K•/F pK•, W )! 0 (III–7)

is exact. In particular the three filtrations Fdir, F ⇤

dir
and Find coincide on

E0, . . . , Er0+1.
2) If for every r � 0 the di↵erentials dr are strictly compatible with the
inductive filtration on Er, then the three filtrations Fdir, F ⇤

dir
, Find coincide

on E1 and coincide with the filtration induced by F on the sub-quotients
GrW

j
H•(K•) of H•(K•).

3) Under the assumption of 2), the spectral sequence for F degenerates at
E1, and one has an isomorphism of spectral sequences

Grp

F
(Er(K•, W )) ⇠= Er(Grp

F
K•, W ).

Proof. 1) We prove by induction on r that Er(F pK•, W ) injects into Er(K•, W )
and that its image is F p

ind
Er(K, W ). By definition this image is also F p

dir
Er(K, W ).

If we have shown this, the first map in (III–7) is into and the dual asser-
tion asserts surjectivity of the second map and identifies the kernel with
F p

ind
Er(K, W ) as well. So the sequence is exact and the three filtrations coin-

cide on Er.
So assume that we have shown the above assertion for some r < r0 and

we want to prove it for r + 1. We have

F p

ind
Er+1(K•, W ) = Im[Ker(F p

ind
Er(K•, W )

dr��! Er(K•, W )�! Er+1(K•, W )]

= Im[Ker Er(F p

ind
K•, W )

dr��! Er(K•, W )�! Er+1(K•, W )]

= Im[(Er+1(F p

ind
K•, W )�! Er+1(K•, W )].

This shows the assertion about the F -filtration. As to injectivity, we use that
dr is strictly compatible with the inductive filtration (by the induction hy-
pothesis) and so

drEr(K•, W ) \ Er(F pK•, W ) = drEr(F pK•, W )

and since Er+1 is obtained from Ker(Er

dr��! Er) upon taking the quotient by
Im(dr) it follows that Er+1(F pK•, W ) injects into Er+1(K•, W ).
2) Note that by 1) the sequences (III–7) are exact for r  r0. If the W -
filtration is biregular this also holds for r =1 so that, using Lemma 3.11.2),
the three filtrations coincide on E1(K•, W ).
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3) The preceding exact sequences for r and r + 1 fit into a commutative
diagram whose rows are exact and in which the oblique arrows form exact
3-term complexes

0 Er(Grp

F
K•, W ) � Er(F pK•, W )  �� Er(F p+1K•, W ) 0

��������
Er(K•, W )

0! Er(Grp

F
K•, W ) �! Er(K•/F p+1K•, W ) ��! Er(K•/F pK•, W )! 0

@

@R

�

� 

�

� 

@

@R

� ↵

↵
0

�
0

Here F = Fdir = F ⇤

dir
= Find. From the diagram we obtain an equality

Grp

F
(Er(K•, W )) = Im(�)/ Im(↵) = Ker(�0)/ Ker(↵0).

Since Im(�)/ Im(↵) is a quotient of Er(Grp

F
K•, W ), while Ker(�0)/ Ker(↵0) is

a subspace, we obtain two dual isomorphisms Grp

F
(Er(K•, W )) ' Er(Grp

F
K•, W )

which are compatible with the di↵erentials dr (since Find is).
Finally, the sequence for r =1 says that

0! GrW H(F pK•)! GrW H(K•)! GrW H(K•/F pK•)! 0

is exact. This is the complex GrW L• with

L• = {0! H(F pK•)! H(K•)! H(K•/F pK•)! 0}.

It is a general fact (see also Lemma A.42) that GrW (L•) is exact if and only
if L• is exact and the di↵erentials are strictly compatible with W . Exactness
means that the di↵erentials of K• are strictly compatible with F : if a 2
F pKi+1 \ d(Ki), the class of a is zero in Hi+1(K•) and so a 2 d(F pK•) and
hence the spectral sequence E(K•, F ) degenerates at E1 (Lemma A.42). ut

3.3 Mixed Hodge Structures and Mixed Hodge

Complexes

The following notion is a variant of Deligne’s ”Complexe de Hodge mixte
cohomologique” from [Del73]. The notion of (mixed) Hodge complex of sheaves
di↵ers from his notion of ”Complexe de Hodge (mixte) cohomologique” in that
the morphisms between these objects are pseudo-morphisms (Def. 2.31) and
hence are given by a chain of genuine morphism.

Definition 3.13. Let R a noetherian subring of C such that R⌦Q is a field
(mostly this will be Z or Q).
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1) A (graded-polarizable) mixed R-Hodge complex

K• =
�
K•

R
, (K•

R⌦Q
, W ), ↵, (K•

C
, W, F ), �

�

consists of the following data
– A bounded below complex K•

R
of R-modules such that Hp(K•

R
) is an

R-module of finite type,
– A bounded below filtered complex (KR⌦Q, W ) of R ⌦ Q-vector spaces,

and a pseudo-morphism (Def. 2.31) ↵ : K•

R
9999KK•

R⌦Q
of bounded be-

low complexes of R-modules (the first comparison morphism) in-
ducing a pseudo-isomorphism

↵⌦ id : K•

R
⌦Q

qis

⇠9999K K•

R⌦Q
;

– A bi-filtered complex (K•

C
, W, F ) of complex vector spaces and a pseudo-

morphism � : (K•

R⌦Q
, W )9999K(K•

C
, W ) in the category of bounded be-

low filtered complexes of R ⌦ Q-modules (the second comparison
morphism), inducing a pseudo-isomorphism

� ⌦ id : (K•

R⌦Q
, W )⌦ C

qis

⇠9999K (K•

C
, W ),

and such that the following axiom is satisfied (we refer to Def. 2.32.1)
for the relevant notions):

for all m 2 Z the tripleGrW

m
K• :=

�
GrW

m
K•

R⌦Q
, (GrW

m
K•

C
, F ),GrW

m
(�)

�

is a (polarizable) R⌦Q-Hodge complex of weight m.

In the Grothendieck ring of pure Hodge structures (cf. Def. A.4), the asso-
ciated Hodge-Grothendieck characteristic is given by

�Hdg(K•) :=
X

k,m2Z

(�1)k
⇥
Hk(GrW

m
K•)

⇤
2 K0(hs).

2) Let X be a topological space. A (graded-polarizable) mixed R-
Hodge complex of sheaves on X

K• =
�
K•

R
, (K•

R⌦Q
, W ), ↵, (K•

C
, W, F ), �

�

consists of the following data
– A bounded below complex of sheaves of R-modules K•

R
such that the hy-

percohomology groups H
k(X,K•

R
) are finitely generated as R-modules,

– A complex of sheaves of Q-vector spacesK•

R⌦Q
equipped with an increas-

ing filtration W and a pseudo-morphism in the category (of sheaves of
R-modules on X) (first comparison morphism) ↵ : K•

R
9999KK•

R⌦Q

inducing a pseudo-isomorphism

↵⌦ id : K•

R
⌦Q

qis

⇠9999K K•

R⌦Q
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– A complex of sheaves of complex vector spaces K•

C
equipped with an

increasing filtration W and a decreasing filtration F , together with a
pseudo-morphism in the category (of sheaves of filtered R⌦Q-modules
on X (second comparison morphism): � : (K•

R⌦Q
, W )9999K(K•

C
, W )

inducing a pseudo-isomorphism

� ⌦ id :
�
K•

R⌦Q
⌦ C, W

� qis

⇠9999K (K•

C
, W )

such that the following axiom is satisfied (see Def. 2.32.2) for the relevant
notions):

for all m 2 Z the tripleGrW

m
K• :=

�
GrW

m
K•

R⌦Q
, (GrW

m
K•

C
, F ),GrW

m
(�)

�

is a (polarizable) R⌦Q-Hodge complex of sheaves of weight m

By Definition 2.32 this means
1. for all k,m 2 Z the R-structure on H

k(GrW

m
K•

C
) induced by ↵ and

the filtration induced by F determine an R-Hodge structure of weight
k + m;

2. the di↵erentials of the derived complexes R� (X,GrW

m
K•

C
) (see (B–12))

are strict with respect to the induced F -filtration.

We also need Tate twists:

Definition 3.14. Let K• =
�
K•

R
, (K•

R⌦Q
, W ), ↵, (K•

C
, W, F ), �

�
be an R-

mixed Hodge complex. Its k-th Tate twist is defined by

K•(k) =
⇣
K•

R
⌦Z Z(2⇡i)k, (K•

R⌦Q
⌦Q Q(2⇡i)k, W [2k]), ↵,

(K•

C
, W [2k], F [k]), �(k)

⌘

where �(k) is induced by � and multiplication with (2⇡i)k. A similar definition
holds for K•(k), where K• is an R-mixed Hodge complex of sheaves.

Remark 3.15. One can normalise the choice of the comparison morphisms as
follows. Since comparison morphisms become morphisms in the derived cate-
gory, they can be represented by a left fraction. A choice of such a left frac-
tion for both comparison morphisms is called a normalisation. We speak
of normalized mixed Hodge complexes. Concretely, we have a tent-like
structure

0K•

R⌦Q
(0K•

C
, W )

↵1 ↵2 �1 �2

K•

R
(K•

R⌦Q
, W ) (K•

C
, W, F )

9
=

;⌘

⌘⌘3
qis

⇠
qis

⇠

Q

Qk

⌘

⌘⌘3
Q

QQk (III–8)

where ↵1 is a morphism of complexes of R-modules, ↵2 is a quasi-isomorphism
of Q-vector spaces, �1 is a filtered morphism of R ⌦ Q-modules and �2 is
a quasi-isomorphism of filtered C-vector spaces. The morphisms ↵1 and ↵2

respectively become quasi-isomorphisms after tensoring with Q, respectively
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C. A morphism between normalised mixed Hodge complexes of sheaves is a
morphisms of the underlying mixed Hodge complexes of sheaves preserving
the normalisations.

The definition of a morphism between mixed Hodge complexes or mixed
Hodge complexes of sheaves is a bit subtle, since the comparison pseudomor-
phisms must be related by a morphisms between those, i.e. there should be
morphisms between the constituents of the chains defining the pseudomor-
phisms verifying the obvious commutativity relations.

Definition 3.16. 1) Let K• =
�
K•

R
, (K•

R⌦Q
, W ), ↵K , (K•

C
, W, F ), �K

�
and

L• =
�
L•

R
, (L•

R⌦Q
, W ), ↵K , (L•

C
, W, F ), �L

�
be two mixed Hodge complexes.

A morphism K• ! L• consists of
– a morphism of bounded below complexes of R-modules

� : K•

R
! L•

R
;

– a morphism of bounded below filtered complexes of R⌦Q-modules

�R⌦Q : (K•

R⌦Q
, W )! (L•

R⌦Q
, W );

– a morphism of bounded below C-vector spaces equipped with two fil-
trations

�C : (K•

C
, W, F )! (L•

C
, W, F );

– morphisms of pseudo-morphisms ↵K ! ↵L and �K ! �L.
2) LetK• =

�
K•

R
, (K•

R⌦Q
,W )↵K, (K•

C
, W, F ), �K

�
and L• =

�
L•

R
, (L•

R⌦Q
,W ),↵L,

(L•
C
, W, F ), �L

�
be two mixed Hodge complexes of sheaves. A morphism

K• ! L• consists of
– a morphism of bounded below complexes of sheaves of R-modules

� : K•

R
! L•

R
;

– a morphism of bounded below filtered complexes of sheaves of R ⌦ Q-
modules

�R⌦Q : (K•

R⌦Q
, W )! (L•

R⌦Q
, W );

– a morphism of bounded below sheaves of C-vector spaces equipped with
two filtrations

�C : (K•

C
, W, F )! (L•

C
, W, F );

– morphisms of pseudomorphisms ↵K ! ↵L and �K ! �L.

Remark 3.17. It should be clear what is meant by a short exact sequence of
mixed Hodge complexes or of mixed Hodge complexes of sheaves. Given a
short exact sequence 0 ! K• ! L• ! M• ! 0 of mixed Hodge complexes,
in view of (III–6), we have

�Hdg(L•) = �HdgK
•) + �Hdg(M•). (III–9)
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The following result is the main tool to construct mixed Hodge structures.

Theorem 3.18. Let

K• =
�
K•

R
, (K•

R⌦Q
, W ), ↵, (K•

C
, W, F ), �

�

be a mixed R-Hodge complex of sheaves on X. Put

K•

R
= R� (K•

R
), (K•

R⌦Q
, W ) = R� (K•

R⌦Q
, W ), (K•

C
, W, F ) = R� (K•

C
, W, F ).

I) The triple
R�K• :=

�
K•, (K•

R⌦Q
, W )), (K•

C
, W, F )

�

together with the induced comparison isomorphisms is an R-mixed Hodge com-
plex. Or, more concretely, the global De Rham complexes of the Godement
resolutions of the three (filtered) complexes K•

R
, (K•

R⌦Q
, W ), (K•

C
, W, F ) to-

gether with the two induced comparison isomorphisms forms a mixed Hodge
complex. This is compatible with Tate twists:

R� [K•(k)] = [R�K•](k).

II) The filtrations W [k] and F induce a mixed Hodge structure on the hyper-
cohomology groups H

k(X,K•

R
). In fact, we have:

i) The filtration on H
k(X,K•

R⌦Q
) defined by

WmH
k(X,K•

R⌦Q
) = Im

�
H

k(X, Wm�kK•

R⌦Q
)! H

k(X,K•

R⌦Q
)
�

and the F -filtration induced on H
k(X,K•

C
) induce a mixed Hodge struc-

ture on H
k(X,K•

R
); this is compatible with Tate twists:

H
k(X,K•

R
(m)) = H

k(X,K•

R
)(m).

ii) The di↵erentials d1 for E1(R� (X,K•), W ) are strictly compatible with
the filtration induced by F .
iii) The spectral sequence for (R� (X,K•), W ) whose E1-term is given by

E�m,k+m

1
= H

k(X,GrW

m
K•

R⌦Q
)

degenerates at E2:

E�m,k+m

2
= H

⇥
E�m�1,k+m

1

d1��! E�m,k+m

1

d1��! E�m+1,k+m

1

⇤

= E�m,k+m

1
= GrW

m+k
H

k(X,K•

R⌦Q
).

)
(III–10)

iv) The spectral sequence

F Ep,q

1
= H

p+q(X,Grp

F
K•

C
) =) H

p+q(X,K•

C
)

degenerates at E1; in particular the natural maps

H
k(X, F pK•)! H

k(X,K•

C
)

are injective and

Grp

F
H

k(X,K•

C
) = H

k(X,Grp

F
K•

C
);
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v) The spectral sequence for the filtered complex (Grp

F
(R� (X,K•

C
), W ) de-

generates at E2.
vi) Referring to (III–1) we have an equality

�Hdg(R�K•) =
X

k

(�1)k
⇥
H

k(X,K•)
⇤
2 K0(hs

R
). (III–11)

Equivalently, with aX : X ! pt the constant map, like Prop. 2.33, we
have

�Hdg(R�K•) = [(RaX)⇤K•] 2 K0(hs
R
).

III) Any morphism of mixed Hodge complexes of sheaves on X induces a
homomorphism of mixed Hodge structures on the associated hypercohomology
groups.

Proof. I) is a direct consequence of the definitions. Given II) (i), III) follows.
It su�ces therefore to prove (i)–(vi).

Recall (Lemma 3.11) that on

Ep,q

1
(K•

R
⌦Q, W ) = Hp+q(GrW

�p
K•

R⌦Q
) = H

p+q(X,GrW

�p
K•

R⌦Q
)

the two direct filtrations and the inductive filtration induced by F coincide.
By definition, F induces a Hodge structure of weight �p+(p+ q) = q on this
term. The di↵erential d1 is compatible with F (see Lemma 3.11), and since
d1 is defined over R⌦Q it commutes with complex conjugation and hence is
compatible with F̄ . This implies that d1 preserves the Hodge decomposition
and hence is strictly compatible with the filtration F . This proves (ii).

We now consider the E2-terms. By Theorem 3.12 (1) the three filtrations
defined by F coincide and the resulting filtration is q-opposed to its complex
conjugate, as before, so that we get a weight q-Hodge structure on Ep,q

2
(K•

R
⌦

Q, W ). Now we prove the following Claim by induction on r.

Claim. For r � 0 the di↵erentials of the spectral sequence Er(K•

R
⌦ Q, W )

are strictly compatible with the inductive filtration F = Find. They vanish for
r � 2.

Indeed, for r = 0 by formula (A–29) this means that the derivatives of the
complex GrW

m
K•

C
= R� (X,GrW

m
K•

C
) must be strictly compatible with the

F -filtration, which holds by definition. For r = 1 we just saw it. For r � 2 it
su�ces to show that dr = 0. By induction, Er = E2 and by Theorem 3.12, the
induction hypothesis implies that the three filtrations Fdir, F ⇤

dir
, Find coincide

on Er and so (see Lemma 3.11) dr preserves this filtration F . We just saw
that the F -filtration on Ep,q

2
= Ep,q

r
is q-opposed to the complex conjugate

filtration and so dr is a morphism of Hodge structures. But dr maps Ep,q

2
, a

Hodge structure of weight q, to Ep+r,q�r+1

r
which has weight q � r + 1 < q

for r > 1, and hence dr = 0.
Now we can complete the proof of the theorem. The Claim implies (iii).

By Lemma 3.11 the F -filtration on Ep,q

1
induced by Hp+q(K•

C
) is the same
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as the one coming from the F -filtration on Ep,q

2
= Ep,q

1
we just consid-

ered. So we have a Hodge structure of weight q on GrW

�p
Hp+q(K•

R
⌦ Q) =

GrW

�p
H

p+q(K•

R⌦Q
) and so, if we shift the W -filtration by p+q, we get a weight

r-Hodge structure on the r-th graded parts graded GrW [p+q]

r
= GrW

r�p�q
. This

proves (i). Theorem 3.12 (3) applies in our situation and this shows (iv) and
(v).

We finally prove (vi). Start with the definition (III–1). By iii), taking in
account the shift of the weight filtration when we pass to hypercohomology,
we get

�Hdg(R�K•) =
X

k,m

(�1)k
⇥
H

k(X,GrW

m
K•)

⇤

=
X

k,m

(�1)k
⇥
GrW

k+m
H

k(X,K•)
⇤

=
X

k,m

(�1)k
⇥
GrW

m
H

k(X,K•)
⇤

=
X

k

(�1)k
H

k(X,K•). ut

A morphism of mixed Hodge complexes of sheaves which is a bifiltered
quasi-isomorphism of course induces an isomorphism of mixed Hodge struc-
tures on the hypercohomology groups. But this is even true for more general
morphisms using Corollary 3.7:

Lemma-Definition 3.19. A morphism of mixed Hodge complexes of sheaves
is called a weak equivalence if it is a quasi-isomorphism (but not necessarily
a bi-filtered quasi-isomorphism). Weak equivalences induce isomorphisms of
mixed Hodge structures on the hypercohomology of the complexes.

For later reference we record here how to produce the tensor product of R-
mixed Hodge complexes. Let us first recall how one forms the tensor product
of two bounded below (filtered) complexes (K•, F ) and (L•, G). The tensor
product complex (K ⌦R L)• is defined as follows

(K ⌦ L)n =
M

i+j=n

Ki ⌦R Lj , d(x⌦ y) = dx⌦ y + (�1)deg xx⌦ dy

and the filtration F ⌦G by

(F ⌦G)m(K• ⌦ L•) =
M

i+j=m

F iK• ⌦R GjL•.

This yields indeed a filtered complex denoted (K•, F )⌦ (L•, G). Tensor prod-
ucts of bi-filtered complexes are defined similarly and denoted in the obvious
way. We have the following result, whose easy proof we omit:

Lemma 3.20. 1) Let there be given two R-mixed Hodge complexes of sheaves
K• =

�
K•

R
, (K•

R⌦Q
, W ), ↵, (K•

C
, W, F ), �

�
and L• =

�
L•

R
, (L•

R⌦Q
, W ), ↵0,

(L•
C
, W, F ), �0

�
. The tensor product K• ⌦ L•, given by
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�
(KR ⌦ LR)•, (K•

R⌦Q
, W )⌦ (L•

R⌦Q
, W ), ↵⌦ ↵0,

(K•

C
, W, F )⌦ (L•

C
, W, F ), � ⌦ �0

�

is a mixed R-Hodge complex of sheaves on X.
2) A similar assertion holds for mixed Hodge complexes K• and L•. For the
Hodge Grothendieck characteristics we have

�Hdg(K• ⌦ L•) = �Hdg(K•)�Hdg(L•). (III–12)

3) The canonical morphism (B–13)

R� (X,K•)⌦R� (X,L•)! R� (X,K• ⌦ L•)

is a morphism of mixed Hodge complexes.

Example 3.21. Let X and Y be two topological spaces, and let p : X⇥Y ! X,
q : X ⇥ Y ! Y the two projections. If we start with a mixed R-Hodge
complex of sheaves on X, say K• and a mixed Hodge complex of sheaves L•
on Y , the tensor product of the two complexes p⇤K• and q⇤L• is the external
product K• ⇥ L•. In particular, the morphism (B–13) in this case becomes
the morphism of mixed R-Hodge complexes

R� (X,K•)⌦R� (Y,L•)! R� (X ⇥ Y,K• ⇥ L•).

3.4 The Mixed Cone

We refer to Definition A.7 for the definition of the cone of a complex. We
would like to construct the cone over a morphism of mixed Hodge complexes
of sheaves as a mixed Hodge complexes of sheaves.

Theorem 3.22. Let K•
�

�! L• be a morphism of mixed Hodge complexes of
sheaves. We denote the weight and Hodge filtrations on K• by W•(K), F •(K•)
and similarly for L•. The comparison morphisms for K• are the pseudo-
morphisms ↵ and �. The ones for L are given by ↵0 and �0.
1) Let us put

WmConep(�S) = Wm�1Kp+1

S
�WmLp

S
, S = R⌦Q, or C

and
F rConep(�C) = F rKp+1

C
� F rLp

C
.

Together with comparison morphisms given by

(↵,↵0) : Cone•(�R) 9999K Cone•(�R⌦Q, W )
(�,�0) : Cone•(�R⌦Q, W ) 9999K Cone•(�C, W, F )

these data define the structure of a mixed Hodge complexes of sheaves on the
cone Cone•(�). We call this structure the mixed cone.
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2) There is an exact sequence of mixed Hodge complexes of sheaves

0! L• ! Cone•(�)! K•[1]! 0

inducing a long exact sequence

· · ·! H
k(X,K•)! H

k(X,L•)! H
k(X,Cone•(�))! H

k+1(X,K•)! · · ·

of mixed Hodge structures with connecting homomorphism induced by �. In
particular all maps are morphisms of mixed Hodge structures.
3) We have

�Hdg(R� Cone•(�)) = �Hdg(R�L•)� �Hdg(R�K•). (III–13)

Proof. 1) A morphism of pseudomorphisms consists of morphisms between
the constituents of the chains which make up a pseudomorphisms and such
that the obvious diagrams commute. This implies that each such diagram
defines a morphism of cones or a quasi-isomorphism of cones or an inverse of
such. In this way we get the pseudo-morphisms for the cones.

The map �R maps WmK•

R
to WmL•R and so on

GrW

m
Cone•(�R) = GrW

m�1
K•

R
[1]�GrW

m
LR

the contribution of � to the di↵erential vanishes. So the preceding direct sum
decomposition is a direct sum decomposition of complexes compatible with
the F -filtration. Since both GrW

m�1
K•[1] and GrW

m
L• are Hodge complexes

of sheaves of weight m, the direct sum GrW

m
Cone•(�) is. This completes the

proof of 1).
2) This is a direct consequence of the definitions and the existence of an exact
sequence for cones (formula (A–12)).
3) This follows from (III–6) and Lemma-Def. 2.35. ut

Remark 3.23. If one would work with comparison morphisms in the derived
category, as Deligne does, one gets diagrams which commute only up to ho-
motopy. It follows that if one would use the same definition as above, the
comparison maps for the cone would not commute with the derivative (re-
member that the derivative of the cone of a map involves the map itself). If
one chooses an explicit homotopy it is still possible to define a representative
for the mixed cone, but this really depends on the choice of the homotopy.

For this reason we have adapted Deligne’s set-up. We work always with
explicit representatives. In the geometric setting these representatives behave
functorially which implies that in the geometric setting we automatically get
morphisms of mixed complexes (of sheaves) in our sense which makes it pos-
sible to use the mixed cones in this situation.

Example 3.24. (relative cohomology) Suppose that Y is a smooth sub-
variety of a compact Kähler manifold X with injection i : Y ,! X. Recall
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(Example 2.34) that for any smooth compact Kähler manifold Z we have
introduced its Hodge-De Rham complex (equipped with the canonical De
Rham-Godement marking)

Hdg•(Z) =
�
Z

Z
, (⌦•

Z
, �(⌦•

Z
)), Z

Z
,! ⌦•

Z

�
.

The relative cohomology H⇤(X,Y ) can be viewed as the hypercohomology of

Hdg•(X,Y ) :=Cone•{Hdg•(X) i
⇤
��! i⇤Hdg•(Y )}[�1]

and hence carries a mixed Hodge structure making the long exact sequence
for the pair (X,Y ) an exact sequence of mixed Hodge structures. The Hodge
Grothendieck characteristic of (X, Y ) is the Hodge Grothendieck character-
istic of the complex of global sections of Hdg•(X,Y ). Hence, using (III–13),
(III–11) and Remark 2.35, we find

�Hdg(X,Y ) = �Hdg(X)� �Hdg(Y ).

Later, when we construct a mixed Hodge complex which computes the co-
homology of possibly singular or non-compact algebraic varieties, the same
construction can be applied when Y is any subvariety. See § 5.5

We next consider functoriality:

Lemma-Definition 3.25. Let f : X ! Y be a continuous map and let K•

be a mixed Hodge complex of sheaves on X. Defining

(Rf⇤K•)
R

= f⇤CGdm(K•

R
) = Rf⇤K•

R

((Rf⇤K•)Q, W ) = Rf⇤(K•

R⌦Q
, W )

((Rf⇤K•)C, W, F ) = Rf⇤(K•

C
, W, F )

one obtains a mixed Hodge complex Rf⇤K• of sheaves on Y (the comparison
morphisms are the obvious ones), and there is an isomorphism of mixed Hodge
structures

H
p(X,K•) ⇠�! H

p(Y,Rf⇤K•).

The (easy) proofs of these assertions are left to the reader.

Example 3.26. Let f : X ! Y be a holomorphic map between compact Kähler
manifolds. Then there is a morphism of mixed Hodge complexes of sheaves
on Y :

f⇤ : Hdg•(Y )! Rf⇤Hdg•(X)

which induces a long exact sequence of mixed Hodge structures

! Hk(Y )
f
⇤

��! Hk(X)! H
k(Y,Cone•(f⇤))! . . . .
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3.5 Extensions of Mixed Hodge Structures

In this section we only consider integral mixed Hodge structures, but all of the
results can easily be formulated and proven for R-Hodge structures. A mixed
Hodge structure contains as part of the information the Hodge structures on
the graded parts of the weight filtration. Two successive steps Wk�1 ⇢Wk in
the weight filtration define an extension of Grk

W
by Wk�1 and so the entire

mixed Hodge structure can be considered as a successive extension of pure
Hodge structures. So it is natural to study extensions in the category of mixed
Hodge structures.

We have seen that the category of mixed Hodge structures is an abelian
category (Corollary 3.9). We can therefore form the Yoneda Ext functor (see
§ A.2.6) Extn

MHS
(�,�). It is defined for n � 1 and for n = 1 will also be

denoted ExtMHS. As usual one puts Ext0
MHS

= HomMHS. By the general
theory (see loc. cit.) the Extn

MHS
(A, B) are groups.

3.5.1 Mixed Hodge Extensions

The abelian group ExtMHS(A, B) is called the group of mixed Hodge ex-
tensions of A by B. Since congruences between 1-extensions are necessarily
isomorphisms of mixed Hodge structures (by Cor. 3.7) the latter classifies
isomorphism classes of extension between mixed Hodge structures.

Remark 3.27. A mixed Hodge structure on H is completely determined spec-
ifying a mixed Hodge structure on the free quotient H/Tors(H). In par-
ticular, first of all, the forgetful functor induces an isomorphism E :=
ExtMHS(Tors(A),Tors(B)) ' ExtAbgrps(Tors(A),Tors(B)). Secondly, since of
course E = ExtAbgrps(A, B) there is a forgetful functor ExtMHS(A, B) ! E
which can be shown to be a retraction for the natural exact sequence

0! E ! ExtMHS(A, B)! ExtMHS(A/ Tors(A), B/Tors(B))! 0.

So this sequence is split and there is no loss of information if we work with
mixed Hodge structures on torsion free modules.

Definition 3.28. Let H be a mixed Hodge structure with HZ torsion free.
For p 2 Z the p-th Jacobian of H is defined as

Jp(H) :=HC/(F p + HZ). (III–14)

Since by (III–3) F 0H(p) = F pH we have

JpH ' J0 Hom(Z, H(p)) = J0 Hom(Z(�p), H). (III–15)

Lemma 3.29. If W�1HQ = HQ the group Jp(H) is a Lie group.
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Proof. The condition implies that F 0HC \ F 0HC = 0 and hence F 0HC does
not meet the image of HZ in HC. In particularly, HZ embeds discretely in
HC/F p. ut

Example 3.30. Let H be a pure Hodge structure of weight 2m�1. Then Jm(H)
is a compact complex torus. Indeed, we have a direct sum decomposition

HC :=HZ ⌦ C = Fm � Fm

and any real element x 2 HZ ⌦ R belonging to one of these summands also
belongs to the other one and so must be zero.

Theorem 3.31. Let A and B be mixed Hodge structures with AZ and BZ

torsion free.

1) There is a canonical isomorphism

Ext(A, B) ⇠= HomW (AC, BC)/ HomW

F
(AC, BC) + HomW (A, B),

or, equivalently

Ext(A, B) ⇠= W0 Hom(A, B)C/W0 \ F 0 Hom(A, B)C + W0 Hom(A, B).

2) Suppose that for some m we have WmB = B while WmA = 0 (i.e. the
weights of B are less than the weights of A, one says that A and B are
separated mixed Hodge structures). There is a natural isomorphism of
groups

m : Ext(A, B)
⇠=��!J0 Hom(A, B)

given explicitly as follows. Let

E = [0! B
�

�! H
↵�! A! 0]

be an extension. Choose a retraction r : H ! B, i.e. r�� = idB and a
section �F of ↵C : HC ! AC preserving the Hodge filtration. Then m(E) 2
J0 Hom(A, B) is represented by rC

��F 2 Hom(A, B)C.

Proof. Since the separatedness implies that W0 Hom(A, B) = Hom(A, B), the
second statement follows from the first, except for the explicit formula for m
which we prove later.

Let
0! B

�

�! H
↵�! A! 0

be an extension of A by B. As AZ is torsion free, the extension of the under-
lying Z-modules splits. Let us choose a section

�Z : AZ ! HZ

which preserves the weight filtration strictly. Any two such sections di↵er by
an element of HomZ(AZ, BZ) = Hom(A, B)Z preserving weights, i.e by an
element of HomW (A, B). The splitting defines an isomorphism of Z-modules
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f(�Z) : BZ �AZ

⇠=�! HZ, (b, a) 7! �(b) + �(a)

such that iQ sends the direct sum weight filtration to the weight filtration of
HQ. Let us now choose a section

�C : AC ! HC

which preserves the weight and the Hodge filtration strictly. This is possible,
since for instance the exact sequence is compatible with the Deligne split-
ting and hence we can take any section that is compatible with it. Any two
such sections di↵er by an element of HomW

F
(AC, BC). If we compare the cor-

responding isomorphism

f(�C) : BC �AC

⇠=�! HC

with f(�Z) we get the C-linear automorphism f(�C)�1� (f(�Z)⌦ 1) of BC �
AC, which in matrix form is given by

g(�) :=
✓

1B �
0 1A

◆
.

The map � : B ! A is just the di↵erence of the two sections and hence
preserves the weight filtration (both sections are strictly compatible with the
weight filtrations and the weight filtration on AQ is the one induced on A
from the weight filtration on HQ). In general it does not preserve the Hodge
filtration.

From the preceding arguments it follows that the class

[�] 2 HomW (AC, BC)/ HomW

F
(AC, BC) + HomW (A, B)

is a well defined invariant of the extension. If [�] = 0, the section �Z can be
chosen in such a way that it preserves the weight and Hodge filtration and
hence H is congruent to the direct sum mixed Hodge structure A�B.

If a C-linear map � : AC ! BC preserves the weight filtration the auto-
morphism g� of B � A preserves the weight filtration as well. The filtration
on BC �AC defined by

F •

�
:= g�(F •(BC)� F •(AC)) = F •(BC) + (1, �)F •(AC).

then induces a mixed Hodge structure, since on

GrW

m
g�(BC �AC) = g�(GrW

m
BC �GrW

m
AC)

it induces the weight m Hodge structure which is the image under g� of the
direct sum Hodge structure GrW

m
BC �GrW

m
AC. So all classes [�] occur.

The group structures are compatible: the Baer-sum of �i and �2 is the
composition of pulling back along a diagonal and pushing out along a co-
diagonal, i.e. if the two extensions are represented by the matrices g(�1) and
g(�2), the Baer sum is represented by the matrix g(�1 + �2).
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Let us now come back to the explicit formula for the isomorphism m for
a separated extension. We just note that the retraction r defines a section �Z

by means of the formula

�Z(a) = h� ��r(h), h 2 H with ↵(h) = a.

Since the extension is separated, both r and �F preserve automatically the
weight filtration, so that by the preceding discussion, the extension is rep-
resented by the di↵erence �F � �Z. With �F (a) � �Z(a) = �(b) we find
b = r��(b) = r��F (a) � r(h) + r���r(h) = r��F (a) which shows that indeed
r��F represents the extension. ut

Corollary 3.32. If V ! V 0 is a surjective morphism of mixed Hodge struc-
tures, then for any mixed Hodge structure H the induced map ExtMHS(H,V )!
ExtMHS(H,V 0) is onto.

Proof. This is basically true since Hom is right exact on free Z-modules. In-
deed, the induced map HomW (H,V )C ! HomW (H,V 00)C is surjective, induc-
ing a surjective map between the quotients on both sides that give Ext(H,V ),
respectively Ext(H,V 0). ut

Remark 3.33. If A and B are separated, the group J0 Hom(A, B)C has the
structure of a complex Lie group. Indeed, separateness is equivalent to saying
that Hom(A, B) has only negative weights, i.e.

W�1 Hom(A, B)Q = Hom(A, B)Q

and the result follows upon applying Lemma 3.29 to the mixed Hodge struc-
ture Hom(A, B).

Examples 3.34. 1) For m < n the group ExtMHS(Z(m), Z(n)) is isomorphic
to C/(2⇡i)n�m

Z, a twist of C
⇥,

2) If H is a Hodge structure of pure weight 2m � 1 we have seen (III–15)
that JmH ' J0 HomMHS(Z(�m), H) and hence

JmH = ExtMHS(Z(�m), H),

a description which will turn out to be useful for an algebraic description
of the Abel-Jacobi map in §. 7.1.2 A.
3) Let X be any smooth projective manifold. Take A = Z and B =
Hk(X, Z)(d) where d is chosen so that k < 2d (for instance,if k = 2m� 1 is
odd, one can take d = m). Then the weights are separated and by (III–15)
we have

ExtMHS(Z, Hk(X, Z)(d)) = J0 Hom(Z, Hk(X, Z)(d))
' JdHk((X, Z)) = Hk(X; C)/Hk(X)� F dHk(X).
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3.5.2 Iterated Extensions and Absolute Hodge Cohomology

We return to Extn

MHS
for arbitrary n. As in the case of modules, given an exact

sequence of mixed Hodge structures, we shall see below that there is a long
exact sequence of Ext-groups and the above description of Ext1 then implies
that it is a right exact functor for R = Z and hence, as in the ”classical” case,
the higher Ext-groups vanish for R = Z or R a subfield of C. As consequence
of Lemma A.33 and Corollary 3.32 we have:

Proposition 3.35. For any two mixed Hodge structures A and B, we have
Extp

MHS
(A, B) = 0 as soon as p � 2.

In the remainder of this section we assume that our mixed (integral) Hodge
structures are polarizable in the sense of Def. 3.1. We only consider morphisms
which come from morphisms preserving some polarization. This leads to the
abelian category consisting of mixed Q-Hodge complexes with polarizable co-
homology. Note that the polarizable Q-Hodge complexes belong to this cat-
egory, but have more structure. The usual construction of the cone provides
the triangles which makes this category triangulated.

Given a bounded below complex H• of mixed Hodge structures we can
make it into a (normalized) mixed Hodge complex: the comparison morphisms
are induced by the identity; the Hodge filtrations stay the same, but the
weights have to be shifted by putting (�W )mHk = Wk+mHk. In this process
the boundary maps in the �W -gradeds becomes zero. So G• = Gr�W

m
H• is

its own cohomology: Hk(G•) = GrW

k+m
Hk, which has a Hodge structure of

weight k + m by assumption. Moreover, the boundary maps being zero in
G•, they are strictly compatible with the F -filtration. So the new complex
is indeed a mixed Hodge complex. This process will be called marking the
complex of mixed Hodge structures and we use � to denote it. Beilinson
[Beil86, 3.11], has shown:

Lemma 3.36. Marking establishes an equivalence of triangulated categories

� : Db

✓
Graded polarizable
mixed Hodge structures

◆
�! Db

0

@
normalized mixed Hodge
complexes with
polarizable cohomology.

1

A

To explain the notion of absolute Hodge cohomology, let us start with
a Hodge structure H of weight 2k. Hodge classes in Hk are precisely the
morphisms of Hodge structure Z(�k) ! Hk. If, instead, we have a complex
H• of mixed Hodge structures, we consider homomorphisms of mixed Hodge
structures Z! H•. Any such morphism is determined uniquely by an element
in W 0 \ F 0H• in other words an element in the kernel of

H• �W0H
•

Q
�W0 \ F 0H•

C

��! H•

Q
�W0H

•

C

(x, y, z) 7! (x� y, y � z).
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This is a surjective homomorphism and so, by the triangle of the cone (A–15)
we can represent HomMHS(Z, H•) by Cone•(�)[�1]. Hence Extk

MHS
(Z, H•),

the groups of the “k-th derived Hodge classes” in a bounded complex H• of
mixed Hodge structures can be calculated as the k-th cohomology groups of
its normalized complex.

Beilinson generalizes this specific cone construction to normalized bounded
mixed Hodge complexes in such a way that it is compatible with the marking.
So start with a tent like (III–8). We first have to replace the weight filtration
W by the backshifted weight filtration (see A.50) Dec W since under marking
we are shifting the weight filtration. Then we have to generalize the above
map � coming from the identity to general comparison morphisms:

K• � (Dec W )0K•

Q
� ((Dec W )0 \ F 0)K•

C

(↵,�)

����! 0K•

Q
� (Dec W )00K

•

C

(k, kQ, kC) 7! (↵1k � ↵2kQ, �1kQ � �2kC).

The absolute Hodge cohomology then is defined as

Hk

Hodge
(K•) :=Hk Cone•(↵,�)[�1].

One can verify that (in the derived category) Cone•(↵,�) indeed only depends
on the data given by the polarizable mixed Hodge complex, i.e. the choices of
0K•

Q
and 0K•

C
are immaterial.

Example 3.37. Let H• be a bounded complex of mixed Hodge structures with
its corresponding normalized complex �(H•). We saw that HomMHS(Z, H•) =
Cone•(�)[�1] and so

Hk

Hodge
(�(H•)) = Hk(Cone•(�)[�1]) = Extk

MHS
(Z, H•) (III–16)

which shows the relation with the Ext-groups.

Pursuing the preceding a little further, we can consider the cohomology
groups of any normalized mixed Hodge complex K•. These, by definition,
admit mixed Hodge structures, so that the objects Extp

MHS
(Z, Hq(K•)) make

sense. It is the Ep,q

2
-term of the spectral sequence for the derived functor

R Hom which reads

Ep,q

2
= Extp

MHS
(Z, Hq(K•)) =) Hp+q

Hodge
(K•).

Since the higher Ext-groups vanish, we thus obtain a short exact sequence

0! Ext1
MHS

(Z, Hk�1K•)! Hk

Hodge
K• ! HomMHS(Z, HkK•)! 0. (III–17)

This sequence serves to relate absolute Hodge cohomology and Deligne coho-
mology. See §. 7.2. Suppose that K• = �(H•), then Hp(K•) = Hp(H•) and
the sequence (III–17) becomes

0! Ext1
MHS

(Z, Hk�1H•)! Extk

MHS
(Z, H•)! HomMHS(Z, HkH•)! 0.
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Note that while a higher Ext between mixed Hodge structures vanishes, this
is no longer true for complexes of mixed Hodge structures.

Historical Remarks. The Deligne splitting is, as the name suggests, due to
Deligne, but the published versions of it can be found in [C-K-S86] and [Mor]. The
results in Sect. 3.2–3.4 are all due to Deligne ([Del71, Del73]). Extensions of (mixed)
Hodge structures have been studied by Carlson [Car79, Car85b, Car87]. The last
section explains Beilinson’s results from [Beil86]. See also the article of Jannsen in
[R-S-S].



Part II

Mixed Hodge structures on Cohomology

Groups



4

Smooth Varieties

The main goal of this chapter is to show that there exists a functorial mixed Hodge
structure on any of the cohomology groups of a smooth variety and which coincides
with the classical Hodge structure if the variety is smooth and projective. To define
this mixed Hodge structure, we first compactify the variety by a divisor whose
singularities locally look like the crossing of coordinate hyperplanes. In § 4.1 we
study the cohomology with respect to this compactification and we shall show in
§ 4.1–4.3 how to put weight and Hodge filtrations on the cohomology groups defining
a mixed Hodge structure. The rational component of the Hodge De Rham complex
which gives this Hodge structure can be given using so-called log structures which
are treated in § 4.4 and which will be used in a decisive way in Chapter 11.

In § 4.5 we check that the mixed Hodge structure does not depend on our chosen
compactification and that the construction is functorial. We also prove the theorem
on the fixed part and show that for projective families over a smooth curve the Leray
spectral sequence degenerates at E2.

4.1 Main Result

Let U be a smooth complex algebraic variety. By [Naga] U is Zariski open
in some compact algebraic variety X, which by [Hir64] one can assume to be
smooth and for which D = X�U locally looks like the crossing of coordinate
hyperplanes. It is called a normal crossing divisor. If the irreducible com-
ponents Dk of D are smooth, we say that D has simple or strict normal
crossings.

Definition 4.1. We say that X is a good compactification of U = X �D
if X is smooth and D is a simple normal crossing divisor.

We return for the moment to the situation where D ⇢ X is a hypersur-
face (possibly with singularities and reducible) inside a smooth n-dimensional
complex manifold X and as above, we set

j : U = X �D ,! X
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A holomorphic di↵erential form ! on U is said to have logarithmic poles
along D if ! and d! have at most a pole of order one along D. It follows that
these holomorphic di↵erential forms constitute a subcomplex ⌦•

X
(log D) ⇢

j⇤⌦•

U
, the logarithmic de Rham complex

Suppose now that D has simple normal crossings, p 2 D and V ⇢ X is an
open neighbourhood with coordinates (z1, . . . , zn) in which D has equation
z1 · · · zk = 0. On can show [Grif-Ha, p. 449]

⌦1

X
(log D)p = OX,p

dz1

z1

� · · · OX,p

dzk

zk

�OX,pdzk+1 � · · ·�OX,pdzn,

⌦p

X
(log D)p =

p^
⌦1

X
(log D)p.

An essential ingredient in the proof of the following theorem is the residue
map which is defined as follows. We set Dk = {zk = 0} and we let D0 be the
divisor on Dk traced out by D. Then writing ! = ⌘ ^ (dzk/zk) + ⌘0 with ⌘, ⌘0

not containing dzk, the residue map can be defined as

res : ⌦p

X
(log D)! ⌦p�1

Dk
(log D0)

! 7! ⌘
��
Dk

.

As a special case we have the Poincaré residues Rk : ⌦1

X
(log D)! ODk which

we shall use in § 11.1.1. As an aside, in § 4.2 we iterate this procedure to get
residues for multiple intersections.

We can now formulate the main result of this chapter:

Theorem 4.2. Let U be a complex algebraic manifold and let X be a good
compactification, i.e. D = X � U is a divisor with simple normal crossings.
Then the following is true.

1)
Hk(U ; C) = H

k(X, ⌦•

X
(log D));

2) The filtration W defined by

Wm⌦p

X
(log D) =

8
<

:

0 for m < 0
⌦p

X
(log D) for m � p

⌦p�m

X
^⌦m

X
(log D) if 0  m  p.

induces in cohomology

WmHk(U ; C) = Im
�
H

k(X, Wm�k⌦•

X
(log D))! Hk(U ; C)

�
,

a filtration which can be defined over the rationals. Together with the triv-
ial filtration F on the complex ⌦•

X
(log D) (see Example A.34.1) which in

cohomology gives

F pHk(U, C) = Im
�
H

k(X, F p⌦•

X
(log D))! Hk(U ; C)

�

these put a mixed Hodge structure on Hk(U).
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By Theorem 3.18, Part 2 of the above theorem would follow if we can put
the structure of a mixed Hodge complex of sheaves on the complex ⌦•

X
(log D);

we postpone this to the next section (Proposition 4.11).
Part 1 is contained in the following Proposition, which we prove first.

Proposition 4.3. The inclusion of complexes

⌦•

X
(log D)! j⇤⌦

•

U

is a quasi-isomorphism and induces a natural identification

Hk(U ; C) = H
k(X, ⌦•

X
(log D)).

In other words, cohomology of U can be calculated using the log-complex.
Furthermore, the natural map j⇤⌦•

U
! j⇤s[C•Gdm

⌦•

U
] = Rj⇤⌦•

U
is a quasi-

isomorphism inducing Hk(U ; C) = H
k(X, Rj⇤CU

).

Proof. The first assertion is a local calculation. We take for X is a polydisc
�n with coordinates (z1, . . . , zn) and that D = Dk is given as above by
z1 · · · zk = 0. Then X and U are Stein manifolds (see Example B.17 1)) and
hence Hi(U, ⌦j

U
) = 0 for all i > 0, j � 0. From Theorem B.18 it follows that

the cohomology of U can be computed as the de Rham cohomology of the
complex ⌦•

U
:

Hq(U ; C) = Hq

DR
(⌦•

U
) = Hq(� (U, ⌦•

U
)).

It su�ces therefore to show that Hq(K•

n,k
) ⇠= Hq(U ; C), where

K•

n,k
:=� (�n, ⌦•

�n(log Dk)).

In fact, if we put

R1

n,k
= C

dz1

z1

� · · ·� C
dzk

zk

(with the convention that R1

n,0
= C)

Rp

n,k
=

p^
R1

n,k

we shall prove by induction that the natural inclusions

↵n,k : R•

n,k
! K•

n,k

are quasi-isomorphisms (here the di↵erentials in the first complex are the zero
maps). This completes the proof since on the one hand, the p-th cohomology
of the first complex is exactly Rp

n,k
, while on the other hand Rp

n,k
is the

cohomology of U , which has the homotopy type of a product of k circles.
To show that ↵n,k is a quasi-isomorphism consider the following diagram

of complexes with exact rows

0! R•

n,k�1
! R•

n,k

res��! R•

n�1,k�1
[�1] ! 0?y

↵n,k�1

?y
↵n,k

?y
↵n�1,k�1

0! K•

n,k�1
! K•

n,k

res��! K•

n�1,k�1
[�1]! 0
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If ↵n,k�1 and ↵n�1,k�1 are quasi-isomorphisms, then also ↵n,k is a quasi-
isomorphism by the five lemma. By the holomorphic Poincaré lemma, ↵n,0 is
a quasi-isomorphism for all n, so by induction ↵n,k is a quasi-isomorphism for
all n, k.

To show the second assertion, consider the first spectral sequence for the
derived functor for j⇤ (see Lemma-Definition A.46). It reads

Epq

1
= Rqj⇤⌦

p

U
) Rp+qj⇤⌦

•

U
.

Since U is Stein, every point x 2 U has a basis of Stein open neighbourhoods
V for which by Example B.17 1) Hq(V,⌦p

U
) = 0 and hence

(Rqj⇤⌦
p

U
)
p

= lim
�!
V

Hq(V,⌦p

U
) = 0.

It follows that this spectral sequence degenerates at E1, i.e. j⇤⌦k

U
' Rkj⇤⌦•

U

where the isomorphism is indeed induced by the natural homomorphism. By
the holomorphic Poincaré-lemma ⌦•

U
is a resolution of C

U
, and so the desired

equality follows. ut

Remark 4.4. We can introduce the subcomplex E•
X

(log D) of j⇤Ep

U
as in the

holomorphic setting. Explicitly, Ep

X
(log D) is generated by local sections of the

form
dzi1

zi1

^ · · ·^ dzim

zim

^�, where m  p and � is a smooth (p�m)-form. The

hypercohomology of this complex also computes the cohomology of U . This
C1-complex is particularly useful when we consider its m-th graded piece
with respect to the weight filtration. It is the complex GrW

m
(Em

X
(log D) ^ E•

X

shifted m places to the right. The complex of its global sections computes the
hypercohomology of GrW

m
(⌦•

X
(log D)). Explicitly

H
k(GrW

m
(⌦•

X
(log D))) =
{↵ 2 � (Em

X
(log D) ^ Ek�m

X
) | d↵ 2 � (Em�1

X
(log D) ^ Ek�m+2

X
)}

d� (Em

X
(log D) ^ Ek�m�1

X
) + � (Em�1

X
(log D) ^ Ek�m+1

X
)

.

4.2 Residue Maps

In this section we gather some facts on global residue maps which we shall
use later. The set up is as in the previous section, so D = D1 [ · · ·DN is a
simple normal crossing divisor inside a complex manifold X. We introduce

DI = Di1
\Di2

\ · · · \Dim , I = {i1, . . . , im};
D(I) :=

X

j 62I

DI \Dj ;

aI : DI ,! X

and we set
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D(0) = X;

D(m) =
a

|I|=m

DI , m = 1, . . . , N ;

am =
a

|I|=m

aI : D(m)! X.

Note that DI is a submanifold of X of codimension |I| and that D(m) is the
normalisation of the union of these submanifolds for |I| = m fixed.

The goal is to define residues along DI . So let p 2 DI . Then all m com-
ponents Di, i 2 I pass through p, but maybe more. We first need to choose
local coordinates respecting in some sense the global enumeration of the com-
ponents of D. Now choose coordinates (U, z1, . . . , zn) centred at p in such a
way that Dij = {zj = 0} for j = 1, . . . ,m, and such that the remaining k�m
components of D are given by the equations {zj = 0}, j = m + 1, . . . , k. Any
local section ! of ⌦p

X
(log D) can then be written as

! =
dz1

z1

^ · · · ^ dzm

zm

^ ⌘ + ⌘0

where ⌘ has at most poles along components Dj , j 62 I, and ⌘0 is not divisible

by the form
dz1

z1

^ · · ·^ dzm

zm

. The restriction of ⌘ to DI is independent of the

chosen adapted local coordinates and so the map ! 7! ⌘|DI generalizes and
globalizes the previously locally defined residue maps. We note also that

d! =
dz1

z1

^ · · · ^ dzm

zm

^ (�1)md⌘ + d⌘0

which implies that the residue map is compatible with derivatives. Further-
more, if in the local description ! has weight  m, clearly ⌘|DI is holomorphic.
Let us collect this in a definition.

Definition 4.5. The residue map

resI : ⌦•

X
(log D)! ⌦•

DI
(log(D(I))[�m]

is locally defined by sending ! = [
dz1

z1

^ · · ·^ dzm

zm

^ ⌘ + ⌘0 to ⌘|D(I), where ⌘0

is not divisible by
dz1

z1

^ · · · ^ dzm

zm

. The residue map restricts to

resI : Wm⌦•

X
(log D)! ⌦•

DI
[�m]. (IV–1)

Lemma 4.6. The residue map (IV–1) is surjective and induces an isomor-
phism of complexes

resm =
M

|I|=m

resI : GrW

m
⌦•

X
(log D)

⇠=�! am⇤⌦
•

D(m)
[�m]. (IV–2)
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Proof. One constructs an inverse as follows. As before, fix an index set I =
{i1, . . . , im}, 1  i1 < i2 · · · < im  N . One defines

⇢I : ⌦p

X
! GrW

m
⌦p+m

X
(log D)

⇢I(�) =
dz1

z1

^ · · · ^ dzm

zm

^ �.

This map is well-defined, since, if w1, . . . , wn are other local coordinates with
D = {w1 = · · · = wk = 0}, the quotients zi/wi are holomorphic and also the
forms dzi/zi�dwi/wi are holomorphic, so that ⇢I(�) in the w-coordinates dif-
fers from the expression in the z-coordinates by a form in Wm�1⌦

p+m

X
(log D)

and so is zero in the quotient. Also, the elements of the form � = zij �
0, �0 a

local section of ⌦p

X
, and dzij ^ �00, �00 a local section of ⌦p�1

X
, map to zero

so that the map ⇢I induces a map of complexes ⌦•

DI
[�m]! GrW

m
⌦•

X
(log D)

which can be assembled for |I| = m to give a morphism of complexes

am⇤⌦
•

D(m)
[�m]! GrW

m
⌦•

X
(log D).

This is clearly an inverse for the residue map. ut
The E1-term of the spectral sequence associated to the weight filtration

on Hk(U ; C) by (A–29) is just

E�m,k+m

1
= H

k(X,GrW

m
⌦•

X
(log D))

which, by the above Lemma is isomorphic to Hk�m(D(m); C). We want to
describe d1 by means of a suitable map between the cohomology groups on
the D(k). To this end we need to introduce various inclusion maps. With
I = (i1, . . . , im) and J = (i1, . . . , bij , . . . , im) we set

⇢I

j
: DI ,! DJ

⇢m

j
=
M

|I|=m

⇢I

j
: D(m) ,! D(m� 1).

�m =
L

m

j=1
(�1)j�1

�
⇢m

j

�
!
: Hk�m(D(m))(�m)
����! Hk�m+2(D(m� 1))(�m + 1)

)
. (IV–3)

The last equation employs the Gysin maps for ⇢m

j
where we use the convention

of (I–5) up to multiplication of both sides by the same power of 2⇡i. It is
defined over the rationals. Over the complex numbers we could forget the
Tate twists at the cost of neglecting a factor of (2⇡i). However, a similar
diagram holds in rational cohomology as we shall see later (Prop. 4.10). For
that reason in the following proposition we don’t leave out these twists.

Proposition 4.7. For all m � 1 the following diagram is commutative

E�m,k+m

1
(W )

resm���! Hk�m(D(m), C)(�m)??yd1

??y��m

E�m+1,k+m

1
(W )

resm���! Hk�m+2(D(m� 1), C)(�m� 1)
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Proof. We fix an index set I = (i1, . . . , im) as above, a class ⌘ 2 Hk�m(DI ; C)
which is the residue of a class [!] 2 H

k(GrW

m
⌦•

X
(log D)). In fact, we then have

resI [!] = ⌘.

As explained in Remark 4.4, we can take for ! a k-form on X which is C1

on U , which has logarithmic singularities along
P

i2I
Di, and such that d!

has weight  m � 1. It is then fairly easy to see that d1[!] = [d!]. Since
�m(⌘) =

P
m

j=1
(�1)j�1

�
⇢I

j

�
!
⌘, it su�ces to prove that

resJ d! = �(�1)j�1
�
⇢I

j

�
!
⌘.

By (I–5) this amounts to showing that for all � 2 H2n�m+k(DJ) one has

1
2⇡i

Z

DJ

resJ d! ^ � = (�1)k

Z

DI

⌘ ^ (⇢I

j
)⇤(�).

We compose

resJ : ⌦•

X
(log D)! ⌦•

DJ
(log(D(J))[�m + 1]

with the residue map

resik : ⌦•

DJ
(log D(J))! ⌦•

DI
(log D(I))[�1].

Since dzI = (�1)m�kdzJ ^ dzik , one gets

resik
� resJ = (�1)m�k resI

so that
(�1)m�k

Z

DI

resI ! ^ (⇢I

k
)⇤� =

Z

DI

resik (resJ ! ^ �) .

We now use a result due to Leray ([Leray]):
Proposition 4.8 (Leray’s residue formula). Let Y be a smooth hyper-
surface of a non-singular compact complex n-dimensional manifold X. Let
✓ 2 � (E2n�1

X
(log Y )) be such that d✓ 2 � (E2n

X
). Then

Z

Y

res(✓) =
1

2⇡i

Z

X

d✓.

Here res(✓) is defined as in the case of holomorphic (n � 1)-forms: if locally

Y is defined by the equation {f = 0}, write ✓ =
df

f
^ ⌘ + ⌘0 where ⌘0 does

not contain
df

f
and where ⌘ is a (2n � 2)-form which is locally C1; then

res(✓) = ⌘|Y .
We apply this to X = DJ , Y = DI and ✓ = resJ ! ^ �. We find

Z

DI

resik (resJ ! ^ �) =
1

2⇡i

Z

DJ

d(resJ ! ^ �) = (�1)m
1

2⇡i

Z

DJ

resJ d! ^ �

which is exactly what we had to prove. ut
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4.3 Associated Mixed Hodge Complexes of Sheaves

In order to construct a mixed Hodge complex of sheaves computing the coho-
mology of U = X �D we need to find a filtered complex over Q which over
C is filtered quasi-isomorphic to ⌦•

X
(log D) with the weight filtration. We are

going to relate the weight filtration to the canonical filtration ⌧ (see Exam-
ple A.34) as an intermediate step to show that the weight filtration is defined
over Q. The same local computation sheds light on the integral structure as
well. For that reason we treat this at the same time:

Lemma 4.9. 1) The inclusion map

(⌦•

X
(log D), ⌧)! (⌦•

X
(log D), W )

is a filtered quasi-isomorphism.
2) There is a commutative diagram

Rmj⇤ZU
����! Rmj⇤CU��� o

��� o
Gr⌧

m
Rj⇤ZU

����! GrW

m
Rj⇤CU

rm

???????y

��� o
GrW

m
(⌦•(log D))??yrm

am⇤ZD(m)
[�m](�m)

↵̃m��! am⇤CD(m)
[�m]

where the map ↵̃m is induced by the inclusion Z(�m) ,! C defining the
Tate twist (III–3).
3) The preceding commutative diagram defines a pseudo-morphism

↵m : am⇤ZD(m)
[�m](�m) 9999K GrW

m
⌦•

X
(log D)

which gives the comparison morphism making the triple

Km :=
⇣
am⇤ZD(m)

[�m](�m), (GrW

m
⌦•

X
(log D), F ), ↵m

⌘
,

a weight-m Hodge complex of sheaves. Here F is the trivial filtration on
the complex GrW

m
(⌦•

X
log D). The comparison isomorphism sends it to the

complex am⇤⌦•

D(m)
with its trivial filtration shifted by �m.

4) Using the notation (II–8) we have

�Hdg(R� (Km)) = (�1)m�HdgD(m) · Lm 2 K0(hs).

Proof. 1) and 2). It is easy to see that the inclusion is a filtered morphism.
To see that it is a filtered quasi-isomorphism we consider the graded part
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Gr⌧

k
[⌦•

X
(log D)] = Hk(⌦•

X
(log D))

���! GrW

k
[⌦•

X
(log D)]

qis

⇠��! (ak)⇤CD(k)
[�k].

)
(IV–4)

We have seen (Prop. 4.3) that replacing U by a small enough neighbourhood
V of a point Q 2 D we have H

k(V,⌦•

X
(log D)) = Hk(V � V \ D; C). If

Q 2 D(m) with m < k both sides of (IV–4) are zero. If however m � k we
remark that since (V � V \ D) has the homotopy type of a product of m
circles the left hand side has for stalk at Q a vector space of dimension

�
m

k

�
.

On the other hand, the stalk at Q of (ak)⇤CD(k)
consists of

�
m

k

�
copies of C

(corresponding to all possible I with |I| = k such that DI � D(m) 3 Q). So
in all cases the remaining map in (IV–4) is a quasi-isomorphism.

Coming back to integral homology, H1(V ) is freely generated by the m
classes of loops �j around any of the m components of D and (R1j⇤CV

)Q =�
H1(⌦•

V
(log D \ V ))

�
Q

is freely generated by the classes of dzk/zk, k =
1, . . . ,m. Applying the residue map, we get the result for 1-cohomology from
the residue formula

R
�j

dzj/zj = 2⇡i. Indeed, it says that the integral coho-
mology inside of the complex vector space

�
R1(a1⇤CD(1))

�
Q

⇠= H1(a�1

1
V ; C)

is generated by the classes of (1/2⇡i)(dzj/zj), j = 1, . . . ,m. For arbi-
trary rank k the result then also follows, since we have on the one hand
(Rkj⇤CV

)Q =
V

m(R1j⇤CV
)Q and on the other hand there is an isomorphism

of sheaves of complex vector spaces

ak⇤CD(k)
⇠=

k^
a1⇤CD(1)

.

3). The complex Grm

⌧
Rj⇤(ZX

)) has only cohomology in degree m, which is

Hm(j⇤ZX
)
⇠=��!
r

am⇤ZD(m)
(�m) = Rmj⇤ZU

.

Part 1 and 2 say that the residue map is a quasi-isomorphism of complexes
which comes from a quasi-isomorphism on integral level, provided we take the
correct identifications as stated. Since the hypercohomology of the complex
GrW

m
⌦•

X
(log D) with the trivial filtration computes the cohomology of D(m)

with its induced Hodge structure, Example 2.34 states that we indeed get
a Hodge complex. The twist by �m forced upon us by the identifications,
guarantees that we have a complex of weight m instead of weight 0.
4). The k-th cohomology group of the complex R�Km is Hk�m(D(m))(�m).
Hence

�Hdg(R�Km) =
X

k

(�1)kHk�m(D(m))(�m)

=
X

k

(�1)`+mH`(D(m))(�m)

= (�1)m�Hdg(D(m)) · Lm. ut
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As a first consequence we find that Prop. 4.7 is valid over Q (since com-
mutativity holds if it holds after tensoring with C).

Proposition 4.10. For all m � 1 the following diagram is commutative

WE�m,k+m

1

resm���! Hk�m(D(m); Q)(�m)??yd1

??y��m

WE�m+1,k+m

1

resm���! Hk�m+2(D(m� 1); Q)(�m + 1).

Here �m is the alternating sum of the Gysin homomorphisms (see (IV–3)).

As a second consequence of Lemma 4.9 we obtain the following description
of the weight filtration:

WmHk(U ; C) = Im
�
H

k(X, ⌧m�k⌦•

X
(log D))! Hk(U ; C)

�

= Im
�
H

k(X, ⌧m�kj⇤⌦•

U
)! Hk(U ; C)

�
.

The last equality follows from the fact that a quasi-isomorphism between
complexes is automatically a filtered quasi-isomorphism with respect to the
canonical filtrations. Since the canonical filtration can be put on any complex,
the weight filtration can be defined over Q, replacing Rj⇤CU

by C•
Gdm

(Q
U

)
one then sets

WmHk(U ; Q) = Im
⇣
H

k(X, ⌧m�kj⇤C•Gdm
(Q

U
))! H

k(X, j⇤C•Gdm
(Q

U
))
⌘

.

We now have shown the main result of this chapter:

Proposition-Definition 4.11. The following data form a mixed Hodge com-
plex of sheaves on X, and is called the Hodge-De Rham complex of (X,D),
denoted Hdg•(X log D).

– The complex Rj⇤ZU
= j⇤C•Gdm

(Z
U

) (U = X �D);
– the complex Rj⇤Q

U
with its canonical filtration and the obvious morphism

↵ : Rj⇤ZU
! Rj⇤Q

U
;

– the complex ⌦•

X
(log D) with the filtrations W,F and the filtered pseudo-

morphism � defined by the following diagram

(Rj⇤⌦•

U
, ⌧) (⌦•

X
(log D), ⌧))

(Rj⇤Q
U

, ⌧)! (Rj⇤CU
, ⌧) (j⇤⌦•

U
, ⌧) (⌦•

X
(log D), W )

⌘
⌘3

Q
Qk

⌘
⌘+

Q
Qs

These complexes compute the cohomology of U and the filtrations (together
with the trivial filtrations) induce on it the mixed Hodge structure announced
in Theorem 4.2. For the Hodge-Grothendieck character of U and its Hodge-
Euler polynomial we have
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�Hdg(U) :=
X

k�0

(�1)k
⇥
Hk(U)

⇤
=
X

m�0

(�1)m�Hdg(D(m)) · Lm (IV–5)

eHdg(U) =
X

k,p,q�0

(�1)khp,q[Hk(U)]upvq

=
X

m�0

(�1)meHdg(D(m)(uv)m. (IV–6)

In particular, we have for all p, q � 0
X

k�0

(�1)khp,q[Hk(U)] = (�1)p+q
X

m�0

(�1)mhp�m,q�m(D(m)).

For later reference, we state a result, the proof of which is left to the reader:

Lemma 4.12. Let X and Y be smooth compact complex algebraic manifolds,
D ⇢ X a simple normal crossing divisor and ⇡ : Y ! X a holomorphic map.
We suppose that the inverse image E of D is either empty, all of Y or a
simple normal crossing divisor on Y . In these three cases we put respectively

Hdg•(Y log E) =

8
<

:

Hdg•(Y ) if E = ?

0 if E = Y
Hdg•(Y log E) else.

There is a canonical morphism

⇡⇤ : Hdg•(X log D)! R⇡⇤Hdg•(Y log E)

of mixed Hodge complexes of sheaves which induces a morphism of mixed
Hodge structures

Hm(X �D)! Hm(Y � E).

4.4 Logarithmic Structures

In this section we give an alternative description of the rational component
of the Hodge-De Rham complex of (X, D), using the concept of logarithmic
structure of Fontaine, Illusie and Kato [Ill94],[Kato88].

Definition 4.13. Let (X,OX) be an analytic space. A pre-log structure on
X consists of a sheaf M of monoids on X together with a homomorphism
↵ : M! OX of monoids. Here OX is considered as a sheaf of monoids with
the multiplication as its operation. The pair (M, ↵) is called a log structure

if ↵�1(O⇤
X

) ' O⇤
X

.

Example 4.14. The trivial log structure on X is the pair (O⇤
X

,O⇤
X

,! OX).
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Let X be a complex manifold and D ⇢ X a divisor with normal crossings on
X. Define MX,D = OX \ j⇤O⇤U and let ↵ be its inclusion in OX .

From now on we assume that D has simple normal crossings.
We let Mgp

X,D
denote the sheaf of abelian groups associated to MX,D. It

has the following universal property: there is a universal map c : MX,D !
Mgp

X,D
and every homomorphism of monoid sheaves from MX,D to a sheaf

of groups on X factorizes uniquely over c. If OX(⇤D) is the sheaf of germ
of meromorphic functions on X with only poles along D (which is a sheaf of
rings), then Mgp

X,D
is the sheaf of its invertible elements. The choice of a local

generator t for the ideal sheaf of D gives an isomorphism OX(⇤D) ' OX [t�1].
Hence

Mgp

X,D
/O⇤

X
' a⇤ZD(1)

.

Let j : U = X �D ,! X. Consider the exponential map

e : OX !Mgp

X,D

f 7! exp(2⇡if).

Its kernel is Z
X

= j⇤ZU
and its cokernel is a⇤ZD(1)

' R1j⇤ZU
. Hence, if

we consider e as a complex of sheaves where OX is placed in degree zero, it
has the same cohomology as ⌧1Rj⇤ZU

. The following construction provides
us essentially with the exterior powers of e ⌦ Q. It is a special case of the
construction of Koszul complexes of a morphism by Illusie [Ill71, Sect. 4.3.1].
Define

Kq

p
= Symp�q

Q
(OX)⌦

q^

Q

(Mgp

X,D
⌦Z Q),

and d : Kq

p
! Kq+1

p
by

d(f1 · · · fp�q ⌦ y) =
p�qX

i=1

f1 · · · fi�1 · fi+1 · · · fp�q ⌦ e(fi) ^ y

for sections f1, . . . , fp�q of OX and y of
V

q

Q
(Mgp

X,D
⌦Z Q). We get complexes

K•

p
: 0! K0

p

d�! K1

p
! · · ·! Kp

p
! 0,

and inclusions of complexes

K•

p
! K•

p+1
, f1 · · · fp�q ⌦ y 7! 1 · f1 · · · fp�q ⌦ y.

Theorem 4.15. The map

�p : K•

p
! ⌦•

X
(log D)

given by

�p(f1 · · · fp�q ⌦ y1 ^ · · · ^ yq) =
1

(2⇡i)q

 
p�qY

i=1

fi

!
dy1

y1

^ · · · ^ dyq

yq

induces a quasi-isomorphism between K•
p
⌦Q C and Wp⌦•

X
(log D).
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Proof. Due to [Ill71, Prop. 4.3.1.6] we have for q  p that

Hq(K•

p
) ' Symp�q(Ker(e))⌦

q^
(Coker(e)) ' a⇤Q

D(q)
.

Moreover, Hq(K•
p
) = 0 for q > p. The local representatives of these cohomol-

ogy classes are mapped by �p to the local generators
1

(2⇡i)q

dzi1

zi1

^ · · · ^
dziq

ziq

for the cohomology sheaves of Hq(⌦•

X
(log D)). ut

Corollary 4.16. Let K•
1

= lim
�!
p

K•
p
. For m 2 N define WmK•

1
to be the

image of K•
m

in K•
1

. Then

lim
�!
n

�n : (K•

1
, W )⌦ C! (⌦•

X
(log D), W )

is a filtered quasi-isomorphism.

Corollary 4.17. In the definition of the Hodge-De Rham complex of the pair
(X,D), the rational component (Rj⇤Q

U
, ⌧) may be replaced by (K•

1
, W ). This

defines the same rational structure and weight filtration on the cohomology of
U.

Proof. We have a diagram

K•

1

qis

⇠��!Rj⇤j
⇤K•

1

qis

⇠ ��Rj⇤Q
U

.

Indeed, the second map is a quasi-isomorphism, because K•

1|U
is a resolution

of Q
U

; the first map is a quasi-isomorphism by the computations above. ut

4.5 Independence of the Compactification and Further

Complements

4.5.1 Invariance

Let us first look at what happens for a morphism f : U ! V between two
smooth varieties. It is possible to find smooth compactifications X of U and Y
of V so that D = X�U and E = Y �V are divisors with simple normal cross-
ings and such that f extends to a morphism f̄ : X ! Y . This can be done as
follows. First you choose any compactifications of U and V with simple nor-
mal crossing divisors and then you take a suitable resolution of singularities of
the closure of the graph of f . By Lemma 4.12 the morphism f̄ induces a mor-
phism of bi-filtered complexes (⌦•

Y
(log E), W, F )! (Rf⇤ (⌦•

X
(log D)) , W, F )

underlying a morphism Hdg•(Y log E) ! Rf⇤Hdg•(X log D). This in turn
induces a morphism f⇤ : Hk(V ) ! Hk(U) preserving Hodge and weight fil-
tration. This is therefore a morphism of mixed Hodge structures induced by
the choice of the compactifications. Clearly, if f is biholomorphic, f⇤ is an
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isomorphism of mixed Hodge structures. Suppose now that X and Y are two
compactifications of U and let Z be a resolution of the closure of the diago-
nal � of U ⇥ U inside X ⇥ Y such that Z is a good compactification of X
as well. The two projections Z ! X and Z ! Y induce the identity on U .
By the preceding remark, these then induce isomorphisms between the two
mixed Hodge structure on Hk(U) got by the compactification Z and the one
got by the one by either X or Y . In particular, the mixed Hodge structure is
independent of the compactification. In total, we have shown:

Proposition 4.18. The mixed Hodge structure on Hk(U), constructed in the
previous section is independent of the choice of the compactification. Any mor-
phism between smooth complex algebraic varieties f : U ! V induces a mor-
phism f⇤ : Hk(V ) ! Hk(U) of mixed Hodge structures. The latter comes
from the morphism

Hdg•(Y log E)! Rf̄⇤Hdg•(X log D)

induced by any extension f̄ : X ! Y of f to good compactifications (Def. 4.1)
(X,D) of U , respectively (Y,E) of V .

Example 4.19 (The mixed Hodge structure depends on the algebraic struc-
ture).

This example is due to Serre and is treated in detail in [Hart70]. We start
out with an elliptic curve E and the P

1-bundle X associated to the non-split
rank two bundle V defined as an extension of the trivial line bundle by the
trivial line bundle. The canonical trivial subbundle defines a section s of the
P

1-bundle, and we let U be its complement in X ; it is a C-bundle over E. We
claim that U = C

⇤ ⇥ C
⇤. Indeed, all sections of V meet s somewhere and so

U does not contain compact submanifolds. On the other hand, pulling back
U ! E to the universal cover C of E trivializes this C-bundle so that the
total space becomes C⇥C. The covering group Z⇥Z acts and since U has no
compact submanifolds this action must be non-trivial on both factors and the
quotient U is as claimed. But then also P

1⇥P
1 is a good compactification of U .

We have H1(U) = Z�Z. It is easy to see that the restriction H1(X)! H1(U)
is injective and hence an isomorphism. This shows that H1(U) ⇠= H1(E) = W1

for this compactification, while for the second compactification H1(U) has
pure weight 2: it is contained in H2(D), D the compactifying divisor (four
copies of P

1).

4.5.2 Restrictions for the Hodge Numbers

Proposition 4.20. Let U be a smooth complex algebraic variety and let X be
a good compactification of U . Then

WmHk(U) = 0 for m < k
WkHk(U) = Im

�
Hk(X)! Hk(U)

�
.
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The Hodge numbers hp,q of Hk(U) can only be non-zero in the triangular
region p  k, q  k, p + q � k.

Proof. The weight-m part is the image of H
k(X, ⌧m�kRj⇤Q

U
) inside the

space H
k(X,Rj⇤Q

U
). Since ⌧rRj⇤Q

U
= 0 for r < 0 and ⌧0Rj⇤Q

U
= Q

X

placed in degree 0, the first two assertions follow. The last assertion follows
from the fact that the spectral sequence for the weight filtration degener-
ates at the E2-term and hence the rational Hodge structure E�m,k+m

1
=

GrW

m
Hk(U ; Q) is a sub quotient of Hk�m(D(m); Q)(�m). The Hodge num-

bers hp,q[Hk�m(D(m))] are zero if p > k �m or q > k �m so that, in view
of the Tate shift, hp,q(GrW

m
Hk(U ; Q)) = 0 if p > k or q > k. ut

Remark 4.21. We shall see later (Corollary 6.30) that the Proposition remains
true for any smooth compactification X of U .

Corollary 4.22. Let Y be a smooth projective variety, V a smooth variety,
f : Y ! V a morphism, and j : V ,! X a smooth compactification of V .
Then the subgroups f⇤Hk(V ; Q) and (j�f)⇤Hk(X; Q) of Hk(Y ; Q) coincide.

Proof. Because f⇤ and (j�f)⇤ are both strictly compatible with the weight
filtrations, it su�ces to prove that the graded pieces have the same image.
But Hk(X; Q) is pure of weight k, so only the weight k-pieces matter. By the
previous Proposition GrW

k
Hk(X; Q)! GrW

k
Hk(V ; Q) is onto and hence the

image under restriction of these groups in Hk(Y ; Q) must be the same. ut

4.5.3 Theorem of the Fixed Part and Applications

Recall (Theorem 1.38) that for smooth projective maps f : V ! U the Leray
spectral sequence

Hp(U, Rqf⇤Q)) Hp+q(V ; Q)

degenerates at E2. This implies in particular that the edge-homomorphism
(A–30)

ek(f) : Hk(V ; Q)! H0(U, Rkf⇤Q)

is surjective.

Theorem 4.23 (Theorem of the fixed part). Suppose that U is quasi-
projective and that f : V ! U is a smooth projective map. For any smooth
compactification X of V , the natural restriction map composed with ek(f)

Hk(X; Q)! Hk(V ; Q)
ek(f)

����! H0(U, Rkf⇤Q)

is surjective. In other words, if we identify the right hand side with those k-
classes on the fibre, invariant under monodromy, all of these are restrictions
from classes on X.
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Proof. Let s 2 U and let Y = Vs be the fibre over s. Since H0(U, Rkf⇤Q)
can be identified with the invariant classes under the action of ⇡1(U, s) on
Hk(Y ; Q) it su�ces to compare the images of Hk(X; Q) and Hk(U ; Q) in
Hk(Y ; Q). But by Corollary 4.22 these images are the same. On the other
hand, the Invariant Cycle Theorem 1.40 tells us that the image of Hk(U ; Q)
consists of the invariant classes. ut

It follows that the Leray spectral sequence degenerates for a projective
family over a one-dimensional base.

Theorem 4.24. Let f : X ! S a morphism between smooth projective vari-
eties and let dim(S) = 1. Then the first edge homomorphism (A–30)

ek = ek(f) : Hk(X; Q)! E0,k

2
(f) = H0(S;Rkf⇤Q).

is surjective, and the Leray spectral sequence for f degenerates at E2.

Proof. The Leray spectral sequence for f degenerates precisely when ek is
surjective. We are going to show that this is always the case. Let j : U ,! S
be the inclusion of the open set of regular values of f into S. Put V = f�1U
and let jV : V ,! X be the inclusion.

The edge homomorphisms ek = ek(f), eV

k
= ek(f |V ) and the adjunction

morphism
ak : Rkf⇤Q

X
! j⇤j

⇤Rkf⇤Q
X

.

fit into the following commutative diagram

Hk(X,V ; Q)

r

????y
Hk(X; Q)

ek��! H0(S;Rkf⇤Q
X

)

j
V

???????y

??yak

H0(S, j⇤j⇤Rkf⇤Q
X

)??y⇠=

Hk(V ; Q)
e

V
k��! H0(U, j⇤Rkf⇤Q

X
).

The leftmost sequence is part of the long exact sequence for the pair (X,V ).
The kernel of ak is a sky-scraper sheaf supported on S � U . Its stalk at a

point t can be described as follows. Choose small a enough disk �t centred at
t and let �⇤

t
be the punctured disk. Then at t the adjunction homomorphism

can be identified with the restriction

(Rkj⇤)t : (Rkf⇤Q
X

)t ' Hk(f�1�t; Q)! Hk(f�1�⇤

t
; Q)T = (j⇤j⇤Rkf⇤Q

X
)t,

where the target is the subspace of invariants under the local monodromy T
at t. Under these identifications, this is the same as the edge-homomorphism
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for the Leray-spectral sequence for f |�t. The map (Rkj⇤)t comes from the
restriction j⇤

t
figuring in long exact sequence for the pair (f�1�t, f�1�⇤

t
)

· · ·! Hk(f�1�t, f
�1�⇤

t
; Q)! Hk(f�1�t; Q)

j
⇤
t��! Hk(f�1�⇤

t
; Q)! · · · .

It follows that

Ker(ak)=
M

t

Ker(a�t
k

)' Im

"
M

t

Hk(f�1�t, f
�1�⇤

t
; Q)!

M

t

Hk(f�1�t; Q)

#
.

By excision
L

t
Hk(f�1�t, f�1�⇤

t
; Q) ' Hk(X,V ; Q). Since the composition

of restrictions Hk(X,V ; Q) !
L

t
Hk(f�1�t, f�1�⇤

t
; Q) ! Hk(f�1�t; Q)

factors over the natural map Hk(X, V ) r�! Hk(X) figuring in the long exact
sequence of the pair (X,V ), we deduce an exact sequence

Hk(X,U)
ek�r���! H0(S, Rkf⇤Q

X
)

ak��! H0(S, j⇤j
⇤Rkf⇤Q

X
). (IV–7)

Let ⌘ 2 H0(S;Rkf⇤Q
X

). By the Theorem of the Fixed Part (4.23) there is
an element ⇠ 2 Hk(X; Q) with eV

k
�jV (⇠) = ak(⌘). It follows that ek(⇠) �

⌘ 2 Ker(ak) and hence, by the exact sequence (IV–7), is of the form ek(✓),
✓ 2 Hk(X; Q) so that ek(⇠ � ✓) = ⌘. ut

4.5.4 Application to Lefschetz Pencils

The Lefschetz hyperplane theorem (§ C.2.3) can be reformulated in terms of
Hodge theory as follows.

Theorem 4.25. Let X be an (n + 1)-dimensional projective manifold and let
i : Y ,! X be a smooth hyperplane section. Then

1) for k < n the inclusion induces an isomorphism of weight k Hodge struc-
tures i⇤ : Hk(X) ⇠�! Hk(Y );
2) for k > n the Gysin maps induces an isomorphism of weight k Hodge
structures i! : Hk(Y ) ⇠�! Hk+2(X)(�1);
3) the rational middle cohomology splits as

Hn(Y ; Q) = Hn

fixed
(Y ; Q)�Hn

var
(Y ; Q), Hn

fixed
(Y ; Q) ⇠�!

i
⇤

Hn(X; Q); (IV–8)

this is a splitting preserving Hodge decompositions.

Consider now a Lefschetz pencil of hyperplanes {Xu}u2P1 of X with asso-
ciated Lefschetz fibration

f : X̃ = BlBX ! P
1,

where B ⇢ X is the base locus of the pencil. Let �(f) be the critical locus,
and let
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j : U = P
1 ��(f) ,! P

1

be the inclusion. So j⇤Rnf⇤Q
X

is a locally constant sheaf. The splitting (IV–8)
can be globalized over U . The subspaces Hn

fixed
(Xu; Q) ⇢ Hn(Xu; Q) define

a constant subsheaf I and the subspaces Hn

var
(Y ; Q) define the subsheaf V of

vanishing cohomology. By Cor. C.24 there is an orthogonal direct splitting

j⇤Rnf⇤Q
X

= j⇤Rnf⇤Q
X

= I� V. (IV–9)

In this situation, since the the local invariant cycle property holds (Cor. C.21),
by Lemma C.13 the adjunction morphism j]

n
: Rnf⇤Q

X
! j⇤j⇤Rnf⇤Q

X
is

an isomorphism so that the above splitting can be used to study the Leray
spectral sequence

Ep,q

2
(f) = Hp(P1, Rqf⇤Q

X
) =) Hp+q(X̃; Q).

Note that Rnf⇤Q
X

definitely is not locally free. If for k 6= n the adjunction
maps

j]

k
: Rkf⇤Q

X
! j⇤j

⇤Rkf⇤Q
X

(IV–10)

are isomorphisms, the direct image sheaves Rkf⇤Q
X

are locally constant, and
conversely. By Cor. C.22 this is true for even n and “generically” true for odd
n. We now have the following description of the terms in the Leray spectral
sequence.

Theorem 4.26. Let X be an (n + 1)-dimensional projective manifold X and
let f : X̃ ! P

1 a Lefschetz fibration and let Y be a smooth fibre. Suppose
moreover that the adjunction morphism (IV–10) is an isomorphism for all
k = 0, . . . , 2n. Then the E2-terms of the Leray spectral sequence for f have
the following description.

1) For m 6= n one has canonical isomorphisms of Hodge structures

E0,m

2
(f) ⇠= Hm(Y ; Q)

E2,m

2
(f) ⇠= Hm(Y ; Q)(�1)

E1,m

2
(f) = 0.

2) For m = n, one has

E0,n

2
(f) ⇠= Hn

fixed
(Y ; Q)

E2,n

2
(f) ⇠= Hn

fixed
(Y ; Q)(�1)

E1,n

2
(f) ⇠= H1(P1, j⇤V).

Proof. As noted before, the assertions for m 6= n follow from the fact that
our assumptions imply (Lemma C.13) that the sheaves Rmf⇤Q

X
are locally

constant, and hence constant.
The first assertion for m = n follows from the fact that the n-th adjunction

map is an isomorphism. The second assertion is dual to it as we now explain.
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In view of the splitting (IV–9) it su�ces to show that H2(P1, j⇤V) = 0. By
Theorem B.36 H0(P1, j⇤V_) = H0(U, V_) is dual to H2

c
(U, V) = H2(P1, j!V).

It can be calculated by means of the exact sequence

0! j!V! j⇤V!
M

t2�(f)

V
T

t
! 0,

where �⇤
t

is a small punctured disk centred at t and V
T

t
is the subspace of

invariants in Vt under the local monodromy T . It follows that H2(P1, j!V) =
H2(P1, j⇤V) is dual to H0(U, V_) = H0(P1, j⇤V) and this group indeed van-
ishes by the global invariant cycle theorem.

The last assertion follows directly from the definition of the sheaf of van-
ishing cohomology. ut

By Theorem 4.24 the Leray spectral sequence degenerates, and so we have
a decomposition Hm(X̃; Q) ' L2�L1/L2�L0/L1. Note that in general only
L2 is a subspace of Hm(X̃; Q). In fact, since

L2 = E2,m�2

2
= Im[Hm�2(Y ; Q)(�1)

i!�! Hm(X̃; Q)],

it is a natural sub Hodge of Hm(X̃; Q). As for L1, we consider the quotient
L0/L1 = E0,m

2
= H0(P1, Rmf⇤Q). This is the subspace of Hm(Y ; Q) which is

invariant under the global monodromy of the local system V. By the Theorem
of the Fixed Part 4.23 this is the image under restriction Hm(X; Q)! Hm(Y :
Q) and hence has a natural Hodge structure of weight m. Moreover, it follows
that

L1 = Ker[Hm(X̃; Q)(�1) i
⇤
��! Hm(Y ; Q)]

which describes L1 as a sub Hodge structure as well. We can then put the
quotient Hodge structures on the Leray quotients.

For m = n + 1 we dispose of the intersection pairing and we have natural
identifications of the Leray quotients as a sub Hodge structures of Hm(X̃; Q):

L0/L1 = (L2)? = (Ker i⇤)?, L1/L2 = Ker i⇤ \ (Im i!)?.

Summarizing, we have:

Theorem 4.27. Let X be an (n + 1)-dimensional projective manifold X, let
f : X̃ ! P

1, a Lefschetz fibration and let Y be any smooth fibre. Assume
that the restriction Hn(X) ! Hn(Y ) is not an isomorphism (which, by Re-
mark C.22 is the case if n is even and which is generically true for n odd).
The Leray spectral sequence degenerates at E2 and the Leray fibration on
Hm(X̃; Q) is a fibration of sub Hodge structures. For m 6= n + 1 the result-
ing isomorphism of pure Hodge structures Hm(X̃; Q) ' L2�L0/L1 explicitly
reads

Hm(X̃; Q) '

8
<

:

Hm�2(Y ; Q)(�1)�Hm(Y ; Q), if m 6= n, n + 1, n + 2,
Hn�2(Y ; Q)(�1)�Hn(Y ; Q)fixed, if m = n,
Hn(Y ; Q)fixed(�1)�Hn+2(Y ; Q), if m = n + 2.
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For m = n + 1 there is a decomposition Hn+1(X̃; Q) = L2 � L1/L2 � L0/L1

into sub Hodge structures which reads

Hn+1(X̃; Q) = Hn�1(Y ; Q)(�1)�H1(P1, j⇤V)�Hn+1(Y ; Q).

Remark 4.28. It is amusing to compare these direct sum decompositions with
the direct sum decompositions coming from the fact that X̃ = BlBX. In-
deed, if m  n the first decomposition coincides with the decomposition
Hm�2(B; Q)(�1) � Hm(X; Q), while for m > n + 1 one has to switch the
two summands.

Historical Remarks. The construction of a mixed Hodge structure on a smooth
variety given here is due to Deligne [Del71]. In this article most of the other results
from this chapter can be found. For the results in § 4.5.3 we refer also to [Zuc76].
Degeneration of the Leray spectral sequence for Lefschetz pencils had been shown
before, see [Katz73b, Th. 5.6.8].
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Singular Varieties

In this chapter we shall put a functorial mixed Hodge structure on the cohomology
groups of an arbitrary complex algebraic variety which in the smooth case coincides
with the one defined in the previous chapter. The main idea is to express the coho-
mology of the variety in terms of cohomology groups of smooth compact varieties.
To achieve this, we first take a variety X which is compact and contains our given
variety U as a dense Zariski open subset. Then we define the notion of a simplicial
resolution of the pair (X, D), where D = X � U and deal with the mixed Hodge
theory of simplicial varieties. These are introduced in § 5.1. Then, in § 5.1.3 and 5.2
we explain the construction of so-called cubical hyperresolutions of (X, D). These
lead to simplicial resolutions with nice additional properties. Next, in § 5.3, we deal
with the uniqueness and functoriality of the resulting mixed Hodge structure. Cup
products and relative cohomology is discussed in § 5.4 and § 5.5 respectively.

It is crucial in this chapter that we allow varieties to be reducible.

5.1 Simplicial and Cubical Sets

5.1.1 Basic Definitions

The notion of a (co)-simplicial object starts from the standard p-simplex �p,
which is the convex hull in R

p+1 of the p + 1 standard unit-vectors

�p = {(x0, . . . , xp) | xi � 0,
X

i

xi = 1}.

Its boundary consists of the (p�1)-simplices �q

p
= �p\{xq = 0}, q = 0, . . . , p

inducing the embeddings �q : �p�1 ! �p, called the q-th face maps. Its
vertices, the p + 1 standard unit-vectors, can be identified with elements
from the ordered set {0, . . . , p} by the correspondence i () ei. The stan-
dard p-simplex then corresponds to the ordinal [p]. In this way, the maps �q

give examples of non-decreasing maps [p � 1] ! [p]. Other examples of non-
decreasing maps are coming from the degeneration maps �q : �p ! �p�1,
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q = 0, . . . , p � 1 defined by �qe0 = e0, . . . ,�qeq = �qeq+1 = eq, �qeq+2 =
eq+1, . . . �qep = ep�1. This information can be captured in a diagram:

�0 �1 �2 �3 · · ·-
�
-

-
�
-

�
-

-
�
-

�
-

�
-

This is the first example of a co-simplicial set. A simplicial set K• can be
given by a diagram as above, but by reversing the arrows. A semi-simplicial
set is given by a diagram with “face maps” only and for a cubical set we use
cubes instead of simplices. We now give the formal definition.

Definition 5.1. 1) The simplicial category � is the category with objects
the ordered sets {0, . . . , n}, n 2 Z�0, and with morphisms non-decreasing
maps. If we only consider the strictly increasing maps we speak of the semi-

simplicial category 4. The cubical category is the category ⇤ whose
objects are the finite subsets of N and for which Hom(I, J) consists of a
single element if I ⇢ J and else is empty. We set

[n] :={0, . . . , n}.

The n-truncated simplicial, semi-simplicial category, respectively cubical
category is the full sub-category of the category �n, 4n, respectively ⇤
whose objects are the [k] with k 2 [n� 1].
2) A simplicial, co-simplicial object in a category C is a contravari-
ant functor K• : � ! C, respectively a co-variant functor C• : � ! C.
A morphism between such objects is to be understood as a morphism of
corresponding functors. Similarly we speak of a semi-simplicial objects,
co-semi-simplicial objects, cubical objects and co-cubical objects.
We get an n-(co)simplicial object by replacing � by �n and similarly
for n-(co)semi-simplicial object. Recalling that �j are the face maps, we
set

Kn := K•[n] Cn = C•[n] (the set of n-simplices)
dj = K(�j), dj = C(�j)

Moreover, for a cubical object X and I ⇢ N finite we write

XI := X(I)
dIJ := X(I ,! J) : XJ ! XI , I ⇢ J.

So, a simplicial object K• in C consists of objects Kn 2 C, n = 0, . . . , and
for each non-decreasing map ↵ : [n]! [m], there are morphisms d↵ : Km !
Kn. For a co-simplicial object, just reverse the arrows: d↵ : Cn ! Cm. If
moreover, C is an additive category, we may put
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�n :=
nX

j=0

(�1)ndj : Kn ! Kn�1, �n :=
nX

j=0

(�1)ndj : Cn ! Cn+1

thus defining a complex in C:

CK• :={. . . �1��! K1

�0��! K0}, CC• :={C0 �
0

��! C1 �
1

��! . . .}, (V–1)

If S is any object in C the constant simplicial object S is obtained by
setting Sn = S and taking the identity for the maps induced by face and
degeneracy maps. An augmentation of a simplicial object to S is a morphism
K• ! S of simplicial objects. If C is the category of topological spaces, we
speak of a simplicial space, if C is the category of complex algebraic varieties
we speak of a simplicial complex algebraic variety. It should be clear
what is meant by a co-simplicial group, algebra, di↵erential graded
algebra etc. For a simplicial abelian group G•, the complex CG• is a chain
complex, and for a co-simplicial abelian group G• the complex CG• is a co-
chain complex

We define the geometric realization |K•| of a simplicial space K•, using
the convention that every non-decreasing map f : [q] ! [p] has geometric
realizations |f | : �q ! �p:

|K•| =
1a

p=0

�p ⇥Kp/R,

where the equivalence relation R is generated by identifying (s, x) 2 �q ⇥Kq

and (|f |(s), y) 2 �p ⇥ Kp if x = K(f)y for all non-decreasing maps f :
[q] ! [p]. The topology on |K| is the quotient topology under R obtained
from the direct product topology (note that the Kp are topological spaces by
assumption). A semi-simplicial set has a geometric realization as well, using
only strictly decreasing maps to describe the equivalence relation R. There is
a natural augmentation

k : X• ! |X•| (V–2)

defined by sending x 2 Xn to the equivalence class of (x, zn), where zn is the
barycenter of �n.

Examples 5.2 (of simplicial sets).

1) For any topological space X a singular p-simplex is a continuous map

� : �p ! X.

These form the objects of the simplicial space S•(X) of singular simplices
in X. Any non-decreasing f : [i]! [j] seen as a map f : �i ! �j induces
a morphism S(f) : Sj(X) ! Si(X) by sending any j-simplex � to the
i-simplex ��f .
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2) Let A be a countable ordered set and let U = {U↵}↵2A be an open
covering of a topological space X. For any subset I of A we let UI =T

↵2I
U↵. So, if I ⇢ J there is an inclusion dIJ : UJ ,! UI . If j 2 I we let

I(j) ⇢ I be the subset obtained by deleting the j +1-st element and we set
dj = dI(j)I : UI ,! UI(j). The nerve of the covering U is the semi-simplicial
set N(U)• defined by

N(U)n :=
a

|I|=n+1

UI , dj : N(U)n ! N(U)n�1, j = 0, . . . , n.

The inclusions UI ,! X define an augmentation ✏(U) : N(U)• ! X.
3) Let K• be a simplicial set. It induces a simplicial abelian group as fol-
lows. Its elements in degree q are the finite integral linear combination of
q-simplices; morphisms are induced by those in K•. The associated chain
complex is the chain complex for K•. Its homology groups Hq(K•) are
the homology groups of K•. Dualizing we define cohomology groups
Hq(K•). Replacing Z by any commutative ring R, one gets (co)simplicial R-
modules leading to (co)chains and (co)homology groups with R-coe�cients.
For any topological space X the chain complex associated to the simplicial
set S•(X;R) is nothing but the singular chain complex (with values in
R) whose homology and cohomology yields singular homology H•(X;R),
respectively singular cohomology H•(X;R). See § B.1.1.

X{012} �����! X{02}

X{12} �����! X{2}

X{01} �����! X{0}

X{1} �����! X?

Fig. 5.1. A 3-Cubical variety

? ?

? ?

�� 

�� 

�� 

�� 

Examples 5.3 (of cubical varieties).

1) The nerve of a covering (Example 5.5.2) is in fact an A-cubical space.
2) Let Y be a variety with irreducible components Y0, . . . , Yn. Put Y? = Y
and YI =

T
i2I

Yi for I ⇢ [n] non-empty. The maps dIJ : YJ ! YI are given
by the inclusions. This defines an (n + 1)-cubical variety.
3) Any (k + 1)-cubical variety (XI) can be considered as a morphism of
k-cubical varieties Y ! Z by putting ZI = XI and YI = XI[{k} for
I ⇢ [k � 1]. In particular, a 1-cubical variety is the same as a morphism of
varieties.
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X{012}�����!X{02} Y{01}�����!Y{0}
=

X{12}�����!X{2} Y{1}�����!Y?

X{01}�����!X{0} Z{01}�����!Z{0}
=

X{1}�����!X? Z{1}�����!Z?

Fig. 5.2. A 3- cubical variety as a morphism between 2-cubical varieties

? ?

? ?

�� �� 

�� �� 

�� 

�� 

�� 

�� 

?

4) A generalization of the preceding: instead of the category of subsets of
[n � 1] we may consider the category ⇤A of all finite subsets of a given
set A and define A-cubical varieties as contravariant functors from ⇤A

to varieties. Then for two finite sets A and B, the following notions are
equivalent: (AtB)-cubical varieties, A-cubical objects in the category of B-
cubical varieties and B-cubical objects in the category of A-cubical varieties.
The reason is that 2AtB = 2A ⇥ 2B .

Fig. 5.3. A 3-cubical variety as an augmented 2-semi-simplicial variety

X{1}

X{012} = X2

X{12}

X{01} X{0}

X{02}

X? = Y

X{2}

X1

X0
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Remark 5.4. 1) Every semi-simplicial variety admits a unique augmentation
to a point. A semi-simplicial variety augmented towards Y is just a semi-
simplicial object in the category of Y -varieties.
2) Every (n + 1)-cubical variety (XI) gives rise to an augmented n-semi-
simplicial variety X• ! Y in the following way. We put

Xk =
a

|I|=k+1

XI , k = 0, . . . , n

and for each inclusion � : [s] ! [r] and I ⇢ [n] with |I| = r + 1 writing
I = {i0, . . . , ir}, i0 < . . . < ir, we let

X(�)|XI = dIJ , J = �(I) = {i�(0), . . . , i�(s)}.

For all I ⇢ [n] we have a well-defined map d?I : XI ! X? = Y . This is
the desired augmentation. Note that this correspondence is functorial.

If X = {XI} is a cubical variety and X• ! X? its associated augmented
semi-simplicial variety, the continuous map

|✏| : |X•|! X?,

is called the geometric realization of the cubical variety X. For an A-
cubical variety we can also directly describe it: the vertices of the cube ⇤A,
i.e. the finite subsets I of A are in one to one correspondence with the faces
�I of

�A = {f : A! [0, 1] |
X

a2A

f(a) = 1};

they correspond to functions zero on A�I. Note that �? is empty so that the
augmenting variety does not play a role as indeed it should not. If I ⇢ J , there
are inclusions eIJ : �I ! �J and together with the maps dIJ : XJ ! XI

they define the geometric realization as
⇥
|X•| =

a

I⇢A

�I ⇥XI

⇤
/R,

where the equivalence relation R is generated by identifying (f, dIJ(x)) and
(eIJ(f), x).

5.1.2 Sheaves on Semi-simplicial Spaces and Their Cohomology

A sheaf on a semi-simplicial space is a semi-simplicial object in the cat-
egory of pairs (X,F) with X a topological space and F a sheaf on X, and
whose morphisms are pairs (f, f ]) : (X,F) ! (Y,G) with f : X ! Y and
f ] : G ! f⇤F a sheaf homomorphism. More concretely, a sheaf F• on X•

consists of a family of sheaves Fk over Xk such that for increasing maps
� : [n] ! [m] we have sheaf morphisms f ] : Fn ! X(�)⇤Fm satisfying
(f�g)] = f ]�g]. We can likewise consider complexes of sheaves of abelian
groups F•,• on X• and resolutions of a sheaf on X•.
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Examples 5.5. 1) The constant sheaf G
X• , where G is an abelian group.

2) If X• is a semi-simplicial complex analytic space the sheaves OXn define
a sheaf OX• on X•.
3) If X• is a semi-simplicial complex manifold, for any k 2 N , the sheaves
⌦k

Xn
define ⌦k

X•
. They fit in the De Rham complex ⌦•

X•
.

4) Let ✏(U) : N(U)• ! X be the augmented nerve of a covering U of a topo-
logical space X as explained in Example 5.2.1). Let F be any sheaf on X. It
defines a sheaf on the nerve: set FI = � (UI ,F) and for I ⇢ J let FI ! FJ

be restriction maps induced by the inclusions dIJ . This sheaf can be iden-
tified with the co-simplicial group C•(U,F) where Cn(U,F) are precisely
the n-cochains with values in F and the associated complex (C•(U,F), ď) is
the Čech-cochain complex with cohomology Hq(U,F). Consider the double
complex

Cp,q(U,F) :=Cq(U, Cp

Gdm
(F)) (V–3)

with the di↵erentials in the p-direction coming from the Godement resolu-
tion and the di↵erential in the q-direction the Čech-derivative. The asso-
ciated simple complex neither computes H⇤(X,F) nor Čech-cohomology,
but the two spectral sequences of the double complex (A–32) relate the two.
In fact, the vertical rows are exact and the p-th row gives a resolution of
� (X, Cp

Gdm
(F)) so that the first spectral sequence degenerates at E2 and

we have 0Ep,0

2
= Hp(X,F):

0Ep,q

1
= Hq(U, Cp

Gdm
(F)) =) Hp+q(s[C•,•(U,F)] ' Hp+q(X,F). (V–4)

This spectral sequence is called the Mayer-Vietoris spectral sequence.
On the other hand, for the second spectral sequence we have 00Ep,q

1
=

Hq(U, Cp

Gdm
(F)) and if U is acyclic with respect to the sheaves Cp

Gdm
(F), it

degenerates at E2 and gives 00Ep,0

2
= Hp(U,F).

5) Let F• be a sheaf on X•. The Godement resolutions C•
Gdm

(Fm) fit to-
gether to give a resolution C•

Gdm
(F•) of the sheaf F•.

Motivated by (V–4) we define the cohomology of a sheaf of abelian groups
F• on a semi-simplicial space as follows. The abelian groups

F p,q :=� (Xq, Cp

Gdm
(Fq)) (V–5)

form part of a double complex. As before, the di↵erentials d0 in the p-
direction come from the Godement resolution, while now the di↵erentials
d00 =

P
n

j=0
(�1)ndj in the q-direction are the di↵erentials from the co-

simplicial group CF p,• which we introduced before (V–1). Define

Hk(X•,F•) :=Hk(sF •,•). (V–6)

In the special case where X• is the nerve of an open covering U of a topological
space X and the sheaf is coming from a sheaf F on X, the double complex
F •,• is the double complex (V–3). Hence (V–4) implies that
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Hk(N(U)•,F) = Hk(X,F). (V–7)

Suppose that ✏ : X• ! Y is an augmentation and F• a sheaf on X•. The
sheaves ✏⇤Cq

Gdm
(Fp) then form a double complex of sheaves on Y ; its associ-

ated simple complex defines

R✏⇤F• := s[✏⇤C•Gdm
(F•)] (V–8)

with k-th hypercohomology equal to Hk(X•,F•) as one readily verifies:

H
k(Y,R✏⇤F•) = Hk(X•,F•). (V–9)

There are natural adjunction maps of sheaves on Y , extending (B–24):

✏] : G ! R✏⇤(✏�1G)

Definition 5.6. [Del74, §5.3] An augmented semi-simplicial space ✏ : X• !
Y is said to be of cohomological descent if the natural map

✏] : Z
Y
! R✏⇤ZX•

is a quasi-isomorphism. In this case we have

✏⇤ : Hq(Y ) ⇠�! Hq(X•, ZX•) (V–10)

The last assertion is a consequence of (V–9).
The natural augmentation (V–2) is not always of cohomological descent

(it is not always surjective), but we still have (see [Car85a, Th. 3.1]):

Proposition 5.7. Let k : X• ! |X•| be the natural augmentation. It induces
isomorphisms

Hk(|X•|, R|X•|)
⇠�! Hk(X•, RX•).

Proof (Sketch). Put X = |X•| and F = R
X

. For simplicity assume that X• is
n-semi-simplicial. Any subset I of {0, . . . , n} defines a face �I with barycenter
zI . There is a natural map p : X ! �n which is defined by sending Xk⇥{zI},
|I| = k to the k-th vertex of �n and extending a�ne linearly on {x} ⇥ �k,
x 2 Xk using the maps fB . Using a metric on �n where the edges have length
1, consider the open set U 0

j
of points having distance 1 � 1

2(n+1)
to the j-th

vertex of �n. Set Uj = p�1U 0

j
⇢ X. The covering U = {Uj | j = 0, . . . , n} has

the property that UI retracts to p�1zI = X|I|. If x 2 Xk, the class of (x, zk)
in X belongs to Uk and defines a map

j : X• ! N(U)•

which is a homotopy equivalence of simplicial spaces and so defines an isomor-
phism j⇤ : Hk(N(U)•,F) ⇠�! Hk(X•, j⇤F) (here we use that we are working
with constant sheaves). Moreover, by (V–7) the augmentation ✏(U) induces
an isomorphism. Since ✏(U)�j = k the result follows. ut
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5.1.3 Cohomological Descent and Resolutions

We now consider cubical and semi-simplicial varieties. An augmented semi-
simplicial variety is of cohomological descent if this is the case for the under-
lying semi-simplicial topological space. For pairs we have the following notion.

Definition 5.8. [Del74, §5.3] Let X be a variety and D a closed subvariety
of X, a semi-simplicial resolution of the pair (X,D) is a semi-simplicial
variety ✏ : X• ! X augmented towards X such that all maps Xk ! X are
proper, Xk is smooth for all k, ✏ is of cohomological descent and the inverse
image of D on each irreducible component Xi

k
is either all of Xi

k
, or empty,

or a divisor with simple normal crossings on Xi

k
.

Example 5.9. Suppose C is an algebraic curve with one nodal singularity P ,
with normalization n : C̃ ! C and n�1(P ) = {Q0, Q1}. Define C0 = C̃, C1 =
{P}, d0,1(P ) = Q0 and d1,1(P ) = Q1. One obtains a 1–semi-simplicial space
C• with a natural augmentation to C given by n. This is a semi-simplicial
resolution. Indeed, all maps occurring are finite so that Rn⇤ZC• is the complex
[n⇤ZC̃

! Z
P

] which resolves Z
C

since the sequence

0! Z
C
! n⇤ZC̃

! Z
P
! 0

is exact.

Definition 5.10. A cubical variety is said to be of cohomological descent
(respectively a cubical hyperresolution) if its associated augmented semi-
simplicial variety is of cohomological descent (respectively a semi-simplicial
resolution).

Remark 5.11. For an n-cubical variety X let ✏ : X• ! X? be its associated
augmented semi-simplicial variety. We let C•(X) denote the cone over the
morphism Z

X? ! R✏⇤ZX• . Then X• is of cohomological descent if and only
if C•(X) is acyclic. If f : X ! Y is a morphism of n-cubical varieties, and
Z the associated (n + 1)-cubical variety, then Z is of cohomological descent if
and only if C•(Y )! Rf⇤C•(X) is a quasi-isomorphism.

Example 5.12. Using cubical varieties, we can rephrase and generalize Exam-
ple 5.9 to any algebraic curve C. Let ⌃ ⇢ C be the set of its singular points and
n : C̃ ! C its normalization. Put ⌃̃ = n�1⌃ and let i : ⌃ ,! C, ı̃ : ⌃̃ ,! C̃
the natural inclusions. The augmented semi-simplicial variety C• ! C defined
by the 2-cubical variety

C01 = ⌃̃
n|⌃̃

���! ⌃ = C1??yı̃

??yi

C0 = C̃
n�! C = C?

is of cohomological descent for the same reason as in Example 5.9.
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There is another, more geometrical way to decide whether a cubical variety
is of cohomological descent using the geometrical realization |X•| of a semi-
simplicial scheme X• (see § 5.1.1). If ✏ : X• ! Y is an augmented semi-
simplicial complex variety, there is an induced continuous map |✏| : |X•|! Y ,
the geometric realization of the augmentation. We have:

Proposition 5.13. Let ✏ : X• ! Y be an augmented semi-simplicial complex
variety. If |✏| : |X•|! Y is proper and has contractible fibres, the augmented
semi-simplicial complex variety is of cohomological descent. In particular

✏⇤ : Hq(Y ) ⇠�! Hq(X•, ZX•).

Proof. As to the first assertion, observe that it is local on Y in the complex
topology and so we may take for Y an arbitrarily small neighbourhood of
a fixed point. Put X = |X•| and e = |✏|. Prop. 5.7 together with formula
(V–9) imply H

q(Y, R✏⇤ZX•) ' Hq(X,Re⇤ZX•) ' Hq(X). On the other hand,
Hq(X) = Hq(Y ) since the fibres of e are contractible. Hence ✏ induces an
isomorphism H

q(Y, R✏⇤ZX•)
⇠�! Hq(Y, Z

Y
) and the complex R✏⇤ZX• is quasi-

isomorphic to Z
Y

. The formula for the cohomology in the global case then
follows from (V–10). ut

The nature of the fibres can often be decided by local topological consid-
erations. In the preceding example (5.12) this is especially clear from Fig. 5.4
which describes |✏|.

Fig. 5.4. The geometric realization of ✏ : C• ! C

C̃ C

|✏|

|✏|

⌃

⌃

|C•|

⌃̃
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5.2 Construction of Cubical Hyperresolutions

In this section we will show that every pair (X,D) as above admits a cubical
hyperresolution, hence a fortiori a semi-simplicial resolution. In fact we will
show a stronger result, which takes the dimensions of the varieties appearing
into account.

Definition 5.14. 1) A proper modification of a variety X is a proper
morphism f : X̃ ! X such that there exists an open dense U ⇢ X for
which f induces an isomorphism f�1(U) ⇠�! U . A resolution of X is a
proper modification f : X̃ ! X for which X̃ is smooth.
2) The discriminant of a proper morphism f : X ! S is the minimal closed
subset �(f) of S such that f induces an isomorphism X � f�1(�(f)) !
S ��(f).

Remark 5.15. 1) Note that for a morphism f : X ! S of irreducible varieties
one has �(f) = S unless f is birational. Remember that we allow a variety
to have several components. Suppose that all components of X have the
same dimension, then the discriminant of f contains all components of S
of dimension < n.
2) The notion of resolution that we use is a weaker one than Hironaka’s. It
is not assumed that the map f is a composition of blowing-ups with non-
singular centres contained in the singular locus. A resolution in this weak
sense may have a discriminant which contains regular points.

In 1996, Abramovich and de Jong [A-dJ] and, independently, Bogomolov
and Pantev [B-P] have given rather short proofs of the following resolution
theorem:

Theorem 5.16. Let X be an (irreducible) algebraic variety and let D be a
closed subset of X. Then there exists a resolution f : X̃ ! X which is a
projective morphism and such that f�1(D) is a divisor with simple normal
crossings on X̃.

This weak resolution theorem su�ces for our purposes.

Lemma-Definition 5.17. Let f : X̃ ! X be a proper modification with
discriminant D. Define its discriminant square as the commutative diagram

f�1(D)
j

�! X̃??yg

??yf

D
i�! X

and let Y• be the corresponding 2-cubical space. Then Y• is of cohomological
descent.
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Proof. We can apply Prop. 5.13. Indeed, the fibre |✏|�1(x), x 2 D is

{x} [ f�1(x) [ f�1(x)⇥ [0, 1]/ ⇠

where {x} gets identified with f�1(x) ⇥ {(0)} and y 2 f�1(x) with (y, 1) 2
f�1(x)⇥ {(1)}. This yields the topological cone over the fibre f�1(x), which
indeed is contractible onto its vertex. ut

Remark 5.18. In the proof of the above lemma we only use that the restriction
of the map f to the complement of f�1(D) is a homeomorphism. So we
might weaken the notion of discriminant a little and still arrive at the same
conclusion. This will be applied in the study of the discriminant hypersurface
in the space of homogeneous polynomials of given degree in two variables, see
Example 5.38.

Definition 5.19. The discriminant of a proper morphism f : X ! S of
cubical varieties is the smallest closed cubical subvariety D of S such that f
induces isomorphisms XI � f�1(DI)! SI �DI for all I.

This definition implies that we can form a discriminant square for a proper
morphism between k-cubical varieties as we did for a morphism between or-
dinary varieties (Lemma-Definition 5.17). Such a square is a (k + 2)–cubical
variety and can be described as a morphism between discriminant squares
for a morphism between (k � 1)–cubical varieties. Since by Lemma-Def. 5.17
for k = 1, these are of cohomological descent, using Lemma 5.27 inductively
proves:

Lemma 5.20. The (k + 2)–cubical variety defined by a discriminant square
for a proper morphism between k–cubical varieties is of cohomological descent.

Definition 5.21. Let f : X• ! S• be a proper morphism of cubical varieties
with discriminant D• and let T• be a closed cubical subspace of S•. Then we
call f a resolution of (S•, T•) if XI is smooth, f�1

I
(TI) consists of certain

components of XI and divisors with simple normal crossings on some other
components of XI , and dim f�1

I
(DI) < dim SI for all I.

Example 5.22. Let us consider 0-cubical varieties f : X ! S with discrimi-
nant D and let T = ?. Then the condition on the discriminant leads to a
more restrictive notion than that of Definition 5.14. Indeed, if in the above
definition X is supposed to be equidimensional, S must be equidimensional
too, which is not necessarily the case in Def. 5.14 (but both definitions re-
quire X to be smooth and f to be bimeromorphic). Theorem 5.16 provides us
with a resolution in the sense of Def. 5.21 (first take the disjoint union of the
components and then apply the resolution component for component).

Definition 5.23. [G-N-P-P, I.2.6.1 on p. 10] Let f : X̃ ! X be a proper
modification of an irreducible variety X and let a : Y ! X be a dominant
morphism. Then the strict transform of a under f is the diagram
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Ỹ
b�! X̃??yf̃

??yf

Y
a�! X

where one takes U = X ��(f), Ũ = f�1(U), V = a�1(U) , Ỹ is the closure
of Ũ ⇥U V in X̃ ⇥X Y , and f̃ and b are induced by the projections on the two
factors.

Lemma-Definition 5.24. [G-N-P-P, I.2.6.2 on p. 10] Let X be an irreducible
variety and for r = 1, . . . , n let (fr : Xr ! X)r be a finite set of proper
modifications of X. Then there is a minimal proper modification of X which
dominates all fr. It is denoted by sup

r
(fr : Xr ! X)

Theorem 5.25. Let S be an n-cubical variety and let T be a closed cubical
subvariety. Then there exists a resolution f : X ! S of (S, T ).

Proof. We follow the proof of [G-N-P-P, Thm I.2.6]. One defines an n-cubical
set ⌃S in the following way. For I ⇢ [n � 1] we let ⌃SI be the set of closed
subspaces SI,↵ of SI for which there exists a J ⇢ [n� 1] containing I and an
irreducible component of SJ such that SI,↵ is the closure of its image under
the morphism SJ ! SI . Clearly for I 0 ⇢ I we have a map ⌃SI ! ⌃SI0 .
Note that all SI,↵ are irreducible. We need this cubical set in order to glue
the resolutions constructed at each stage into a cubical variety. Indeed, ⌃SI

contains the set of all components of SI (if J = I) and the set of all subvarieties
which are closures of images of components mapping to SI under the maps
SJ ! SI for I ⇢ J , I 6= J .

We build the cubical scheme X step by step, starting with X?. For all
S?,↵ 2 ⌃S? we choose a resolution X?,↵ ! S?,↵ of (S?,↵, S?,↵ \ T?) and
we let f? : X? =

`
X?,↵ ! S?. This resolves all components of S? (since

⌃S? contains all components of S?), and in addition contains smooth compo-
nents lying over those proper subvarieties of S? which come from the cubical
structure. This is the first step.

Now suppose that we have already defined XJ for all proper subsets J
of I. For such J and SI,↵ 2 ⌃SI with image SJ,� 2 ⌃SJ we have the
dominant map SI,↵ ! SJ,� and the proper modification XJ,� ! SJ,� . We
let W J

I,↵
be the strict transform of this pair and let hI,↵ : W J

I,↵
! SI,↵

be the natural map. Using the notation of Lemma-Def. 5.24, we then put
WI,↵ = sup

J⇢I

�
W J

I,↵

hI,↵���! SI,↵

�
. Finally we let XI,↵ ! WI,↵ be a reso-

lution of (WI,↵, h�1

I,↵
(TI)) and put XI =

`
↵

XI,↵. We have natural maps
fI : XI ! SI and XI ! XJ for J ⇢ I. Constructed in this way, XI is
smooth, f�1

I
(TI) is of the desired form and dim f�1

I
(DI) < dim SI . Hence

this procedure leads to a resolution of (S, T ). ut

Theorem 5.26. For any variety X of dimension n and any Zariski closed
subset T with dense complement there exists an (n+1)-cubical hyperresolution
(XI) of (X,T ) such that dim XI  n� |I|+ 1.
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Proof. We construct the hyperresolution step by step. Our induction hypoth-
esis is, that after k steps we dispose of a (k + 1)-cubical variety X(k) which
is proper, of cohomological descent, with X(k)

?
= X such that X(k)

I
smooth

for all non–empty I ⇢ [k � 1], dim X(k)

I
 n � |I| + 1 for all I ⇢ [k] and the

inverse image of T in X(k)

I
is a union of irreducible components of X(k)

I
and

a divisor with simple normal crossings.
The first step is to choose a resolution ⇡ : X̃ ! X of (X,T ) with discrim-

inant D, and to put

X(1)

?
= X, X(1)

{0}
= X̃, X(1)

{1}
= D, X(1)

{0,1}
= ⇡�1D .

Suppose that we have performed k steps successfully. Consider X(k) as a
morphism f (k) : Y (k) ! Z(k) of k-cubical varieties as in Example 5.3. Then
ZI is smooth for I 6= ?. Let T (k) denote the inverse image of T in Y (k). We
choose a resolution Ỹ (k) ! Y (k) of (Y (k), T (k)) and consider the corresponding
discriminant square

E(k) �! Ỹ (k)

??y
??y

D(k) �! Y (k)

9
>=

>;
, (V–11)

where D(k) is the discriminant of Ỹ (k) ! Y (k) and E(k)

I
is the inverse image

of D(k)

I
in Ỹ (k)

I
. Complete this square as follows

E(k) �! Ỹ (k)

??y
??y

D(k) �! Y (k) �! Z(k)

@

@R

In this diagram the outer commutative square of k-cubical varieties can be
considered as a (k+2)-cubical variety X(k+1). More precisely for all I ⇢ [k�1]
we let

Z(k)

I
= X(k+1)

I
, Ỹ (k)

I
= X(k+1)

I[{k}
, D(k)

I
= X(k+1)

I[{k+1}
E(k)

I
= X(k+1)

I[{k,k+1}
.

Note that I ⇢ [k � 1] ) X(k+1)

I
= Z(k)

I
= X(k)

I
so in that case

dim X(k+1)

I
 n� |I|+ 1. Moreover,

dim Ỹ (k)

I
= dim Y (k)

I
= dim X(k)

I[{k}
 n� |I|;

dim D(k)

I
 dim Y (k)

I
� 1  n� |I|� 1

and
dim E(k)

I
 dim Y (k)

I
� 1  n� |I|� 1 .

So we conclude that dim X(k+1)

I
 n� |I|+ 1 for all I ⇢ [k + 1].



5.2 Construction of Cubical Hyperresolutions 123

We finally have to check that X(k+1) is of cohomological descent. We need
some technical preparations. First, for any cubical variety X = {XI} we set

C•(X) :=Cone•
h
Z

X

✏
]

��! R✏⇤ZX•

i
,

where ✏ : X• ! X? is the augmented semi-simplicial variety associated to
X. Next we state a result of which the proof, a direct consequence of the
definitions, is left to the reader.

Lemma 5.27. Let X be a (k + 1)-cubical variety and consider it as a mor-
phism f : Y ! Z of k-cubical varieties. Let F• be a sheaf complex on X
restricting to sheaf complexes on Y and Z denoted by the same symbol. Then

C•(X,F•)[1] = Cone•

C•(Z,F•)

C(f
]
)

����! Rf⇤C
•(Y,F•)

�
.

In particular, the left hand side is acyclic if and only if the map C(f ]) is a
quasi-isomorphism.

Corollary 5.28. Let X be a (k +2)-cubical variety and consider it as a com-
mutative square of k-cubical varieties

Y
f

�! Z??ya

??yb

T
g

�! W.

Then the cone over the natural map of complexes

C•(W )[1] �! Cone• [Rb⇤C
•(Z)�Rg⇤C

•(T )! R(g�a)⇤C•(Y )]

is quasi-isomorphic to C•(X)[2].

Proof. There is an induced square of complexes of sheaves on X?

R(g�a)⇤C•(Y )
C(f

]
)

 ���� Rg⇤C•(Z)x?? C(a
]
)

x?? C(b
]
)

Rg⇤C•(T )
C(g

]
)

 ���� C•(W ).

The cone over the morphism of complexes Cone• C(g])�! Cone•(f ]) given by
(C(b]), C(a])) is quasi-isomorphic to the complex C•(X)[2]. To conclude, we
apply Lemma A.14. ut

Continuation of the proof of Theorem 5.26. By Lemma 5.27, since X(k) is of
cohomological descent, C•(Z(k)) ! Rf (k)

⇤ C•(Y (k)) is a quasi-isomorphism.
By abuse of notation we omit the hyperdirect image functor and abbreviate
this to
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C•(Z(k))
qis

⇠��!C•(Y (k)). (V–12)

Next, by Lemma 5.20, discriminant squares of resolutions of k-cubical vari-
eties, if considered as (k + 2)–cubical varieties, are of cohomological descent.
Apply this to the discriminant square (V–11). Let W be the (k + 2)–cubical
variety it defines. Then C•(W ) is acyclic, and hence, by Cor. 5.28 we have

C•(Y (k))[1]
qis

⇠��! [C•(D(k))� C•(Ỹ (k)Z)]! C•(E(k))

and hence, using (V–12), also

C•(Z(k))[1]
qis

⇠��! [C•(D(k))� C•(Ỹ (k))! C•(E(k))]

i.e., reasoning as before, X(k+1) is of cohomological descent. ut

The proof can be adopted for certain cubical schemes ([G-N-P-P, proof of
Thm. I.2.5] ) and then yields:

Theorem 5.29. Any cubical variety X admits a hyperresolution by a cubical
cubical variety Y = {YIJ} such that dim YIJ  dim X � |I ⇥ J |+ 1.

By example 5.3 4, we can view a cubical cubical variety Y as a cubical
variety, say X 0 so that a resolution as in the above theorem gives rise to
a morphism f : X 0 ! X between cubical varieties. Since also a morphism
between cubical varieties can be viewed as a cubical variety, this immediately
gives

Corollary 5.30. Let X ! Y be a morphism of cubical varieties. Then there
are cubical hyperresolutions X 0 ! X and Y 0 ! Y fitting in a commutative
diagram of morphisms of cubical varieties

X 0 ! Y 0

??y
??y

X ! Y.

5.3 Mixed Hodge Theory for Singular Varieties

5.3.1 The Basic Construction

Definition 5.31. 1) A logarithmic pair (X,D) is a smooth compact va-
riety X together with a closed subvariety D such that for each irreducible
component C of X, the intersection C \D is either empty, or all of C, or
a divisor with simple normal crossings on C.
2) A morphism of logarithmic pairs f : (X, D) ! (X 0, D0) is a morphism
f : X ! X 0 such that f�1(D0) ⇢ D.
3) A semi-simplicial logarithmic pair is defined to be a semi-simplicial
object in the category of logarithmic pairs.
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For each logarithmic pair (X, D) we can define the mixed Hodge complex of
sheaves Hdg•(X log D) on X as the zero object on components of X which are
contained in D and as usual (see Proposition 4.11) on the other components.
For a morphism f : (X,D) ! (X 0, D0) we dispose of a morphism of mixed
Hodge complexes of sheaves

f⇤ : Hdg•(X 0 log D0)! Rf⇤Hdg•(X log D) .

Definition 5.32. The Hodge-De Rham complex for a semi-simplicial log-
arithmic pair (X•, D•) with augmentation ✏ : X• ! Y is the mixed Hodge
complex of sheaves

R✏⇤Hdg•(X• log D•)

on Y obtained from the double complexes on Xr, r � 1 given by
M

p�0

M

q�0

(R✏q)⇤
⇥
Hdgp(Xr log Dr)

⇤
R
, R = Z, Q, C,

by taking at each level the associated single complex, and equipping this with
filtrations W and F as follows:

WmR✏⇤
⇥
Hdgn(X• log D•)

⇤
R

=
M

q�0

(R✏q)⇤Wm+q

⇥
Hdgn�q(Xq log Dq)

⇤
R
, R= Q, C

and

F p

h
R✏⇤

⇥
Hdgn(X• log D•)

⇤
C

i
=
M

q�0

(R✏q)⇤F p
⇥
Hdgn�q(Xq log Dq)

⇤
C

.

The shift in the weight filtration is similar to the one in the construction of
the mixed cone. Note that one has

GrW

m
R✏⇤

⇥
Hdg•(X• log D•)

⇤
R

=
M

q�0

(R✏q)⇤GrW

m+q

⇥
Hdg•(Xq log Dq)

⇤
R
[�q]

=
M

q�0

(R✏q
�Ram+q)⇤Hdg•(Dq(m + q))[�m� 2q](�m� q).

In particular, we have

�Hdg(GrW

m
R✏⇤Hdg•(X• log D•))

=
P

q�0
(�1)m�Hdg(Dq(m + q)) · (�q �m)

�
. (V–13)

If T is a closed subvariety of Y such that ✏�1

q
(T ) ⇢ Dq for all q, and

j : U = Y �T ! Y is the inclusion map, then one has a natural morphism of
complexes

Rj⇤ZU
! R✏⇤

⇥
Hdg•(X 0 log D0)

⇤
Z

which induces a homomorphism Hk(U)! H
k(Y, [Hdg•(X 0 log D0)]Z).
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Suppose that one has a compact augmented semi-simplicial variety
✏ : X• ! Y which is of cohomological descent and a closed subspace T of
Y such that (X•, ✏�1

•
(T )) is a semi-simplicial logarithmic pair. Then, putting

D• = ✏�1

•
(T ), one has

H
k(Y,R✏⇤Hdg•(X• log D•)) ' Hk(|X•|� |D•|)

and this will put a mixed Hodge structure on the right hand side. If (X•, D•) is
a cubical hyperresolution of (Y, T ) the right hand side is isomorphic to Hk(Y �
T ) via the augmentation and so gets an induced mixed Hodge structure as
well.

Given an algebraic variety U , we first choose an embedding U ,! Y of U
as a dense Zariski open subset of a compact variety Y , and subsequently a
cubical hyperresolution of the pair (Y, Y � U). This shows the existence part
in the next theorem.

Theorem 5.33. Let U be a complex algebraic variety.
i) A mixed Hodge structure on the cohomology groups Hk(U) is con-
structed as follows. Let Y be any compact variety containing U as a
dense Zariski open subset with complement T = Y � U . Let ✏ : X• ! Y
be a cubical hyperresolution of the pair (Y, T ) and let D• = ✏�1T . The
mixed Hodge structure on the cohomology of U comes from considering it
as the hypercohomology of the associated Hodge-De Rham complex on Y ,
i.e. the mixed Hodge complex of sheaves R✏⇤Hdg•(X• log D•). A di↵er-
ent compactification together with an appropriate cubical hyperresolution
gives the same mixed Hodge structure.
ii) Referring to III–1, for the Hodge character of U we have the following
equality in K0(hs)

�Hdg(U) :=
P

k�0
(�1)k

⇥
Hk(U)

⇤

=
P

m,q�0
(�1)m�Hdg(Dq(m + q)) · (�m� q).

�
(V–14)

and hence for all p, q � 0 we have
P

k�0
(�1)khp,q[Hk(U)]

= (�1)p+q
P

r,m�0
(�1)mhp�m�r,q�m�r(Dr(m� r))

�
(V–15)

iii) If f : U ! V is a morphism, the induced homomorphism on cohomol-
ogy is a morphism of mixed Hodge structures.
iv) For smooth varieties we obtain the same mixed Hodge structures as in
Chap. 4.

Proof. i) First note that, if one has a morphism f : X• ! X 0
•

of cubical
varieties which are cubical hyperresolutions of (Y, Y � U) and (Y 0, Y 0 � U)
respectively, then one has a morphism of mixed Hodge complexes of sheaves

f⇤ : R✏0
⇤
Hdg•(X 0

•
log D0

•
)! Rf⇤�R✏⇤Hdg•(X• log D•)
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and the induced map

f⇤ : H
k(Y 0, R✏0

⇤
Hdg•(X 0

•
log D0

•
))! H

k(Y,R✏⇤Hdg•(X• log D•))

is a morphism of mixed Hodge structures and moreover a group isomorphism,
hence it is an isomorphism of mixed Hodge structures. So two cubical hy-
perresolutions of pairs (Y, Y � U) and (Y 0, Y 0 � U) which are related by a
morphism induce the same mixed Hodge structure on Hk(U).

Now let U ,! Y 0 and U ,! Y 00 be two compactifications of U and let
{X 0

I
} and {X 00

I
} be cubical hyperresolutions of (Y 0, Y 0�U) and (Y 00, Y 00�U)

respectively. First let Y be the closure of the diagonal of U⇥U inside Y 0⇥Y 00.
We have the diagram

{X 0

I
} �! Y 0  � Y �! Y 00  � {X 00

I
}

and we will use theorem 5.29 to conclude that one has a diagram

{X 0

IJ
} �! {Y 0

I
}  � {YI} �! {Y 00

IJ
}  � {X 00

IJ
}??y

??y
??y

??y
??y

{X 0

I
} �! Y 0  � Y �! Y 00  � {X 00

I
}

where the top row is the cubical hyperresolution of the bottom row. Note
that the cubical cubical varieties {X 0

IJ
} can be considered as single cubical

varieties as in Example 5.3. These are cubical hyperresolutions of (Y 0, Y 0�U)
and (Y 00, Y 00 � U) respectively. Now we have related all the mixed Hodge
structures by a chain of isomorphisms. This shows that the mixed Hodge
structure on Hk(U) does neither depend on the choice of compactification
nor on the choice of a cubical hyperresolution.
ii) This follows from (III–11) and (V–13).
iii) Let f : U ! V be a morphism. First we choose compactifications U ⇢ Y
and V ⇢ Z such that f extends to f : Y ! Z. Then we choose a cubical
hyperresolution f : Y ! Z of the diagram Y ! Z such that ✏Y : Y• ! Y and
✏Z : Z• ! Z are cubical hyperresolutions of (Y,U) and (Z, V ) respectively.
This results in a morphism of mixed Hodge complexes of sheaves

f
⇤

: (R✏Z)⇤Hdg•(Z• log E•)! Rf⇤(R✏Y )⇤Hdg•(Y• log D•)

where D• = ✏�1

Y
(Y � U) and E• = ✏�1

Z
(Z � V ). This shows that the map

f⇤ : Hk(V )! Hk(U) is a morphism of mixed Hodge structures.
iv) In the smooth case we can take a compactification Y of U such that T =
Y �U is a divisor with simple normal crossings on Y . Then Y , considered as
a 0-cubical variety, is a cubical hyperresolution of (Y, T ). The weight spectral
sequence

E(R� (Y,R✏⇤Hdg•(X• log D•)), W )) H(U)

has the form

E�m,k+m

1
= H

k(Y,GrW

m
R✏⇤Hdg•(X• log D•))

=
L

q�0
Hk�m�2q(Dq(m + q))(�m� q) .ut
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Example 5.34. Let D be a simple normal crossing divisor and let D(m) be the
disjoint union of m-fold intersection of components of D. A cubical resolution
is given by {DI}! D, and hence

�Hdg(D) =
X

m�1

(�1)m�Hdg(D(m)). (V–16)

5.3.2 Mixed Hodge Theory of Proper Modifications.

We first prove a fundamental Mayer-Vietoris type result for 2-cubical varieties.

Theorem 5.35. Let
U �! Z??y

??y
Y �! X

be a 2-cubical variety which is of cohomological descent. Then one has a long
exact sequence of mixed Hodge structures

. . .! Hk(X)! Hk(Y )�Hk(Z)! Hk(U)! Hk+1(X)! . . .

For the Hodge characters one has

�Hdg(U) = �Hdg(Y ) + �Hdg(Z)� �Hdg(X).

Proof. For simplicity we only treat the compact case. One may cover this
2-cubical variety by a similar diagram of cubical hyperresolutions

U• �! Z•??y
??y

Y• �! X•

We have the quasi-isomorphism

Hdg•(X•)! Cone•(Hdg•(Y•)�Hdg•(Z•)! Hdg•(U•))[�1]

The long exact sequence of the cone gives the desired sequence of mixed Hodge
structures. ut

Remark 5.36. If two subvarieties U1 and U2 of a given algebraic variety form
an excisive couple (Def. B.4), then the inclusions define a 2-cubical variety U•

with U12 = U1 \ U2 and with augmentation U• ! U = U1 [ U2. The exact
sequence is the Mayer-Vietoris sequence (Theorem B.6).

An example of such a situation is given by two closed subvarieties Y1, Y2 of
a compact algebraic variety Y , since one can triangulate Y in such a way that
Y1 and Y2 are subpolyhedra and these form excisive couples. We conclude

�Hdg(Y1 [ Y2) = �Hdg(Y1) + �Hdg(Y2)� �Hdg(Y1 \ Y2). (V–17)
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Corollary-Definition 5.37. Let f : X̃ ! X be a proper modification with
discriminant D. Put E = f�1(D). Let g : f|E : E ! D and let i : D ! X

and ĩ : E ! X̃ denote the inclusions. Then one has a long exact sequence of
mixed Hodge structures

. . .! Hk(X)
(f
⇤
,i
⇤
)

�����! Hk(X̃)�Hk(D)
ĩ
⇤
�g

⇤

����! Hk(E)! Hk+1(X)! . . .

It is called the Mayer-Vietoris sequence for the discriminant square

associated to f (see Definition-Lemma 5.17). One has

�Hdg(X̃) = �Hdg(X) + �Hdg(E)� �Hdg(D).

Example 5.38. Let Rn be the vector space of homogeneous polynomials in
two variables x, y of degree n with complex coe�cients, and let Pn denote the
associated projective space. For i = 1, . . . , [n/2] we have morphisms

di,n : Pi ⇥ Pn�2i ! Pn

induced by the map Ri⇥Rn�2i ! Rn given by (q, r) 7! q2r. These morphisms
are proper and generically injective. Let Si,n ⇢ Pn denote the image of di,n.
The map dm,2m : Pm ! P2m is an embedding, so Sm,2m ' Pm, whereas
dm,2m+1 : Pm ⇥ P1 ! P2m+1 is injective but not an immersion. However,
still dm,2m+1 induces an isomorphism on cohomology between Sm,2m+1 and
Pm ⇥ P1. We are going to compute the mixed Hodge structures on H⇤(Si,n)
for all i  n/2. The result is formulated as follows. Consider the cohomology
ring Q[�i, µn�2i] ' Q[�, µ]/(�i+1, µn�2i+1) of Pi ⇥ Pn�2i.
Claim: the map d⇤

i,n
: H⇤(Si,n) ! H⇤(Pi ⇥ Pn�2i) is injective and its image

is the subalgebra generated by 2�i + µn�2i and µn�2i

n�2i
.

We prove this by descending induction on i and increasing induction on
n. Clearly the claim holds for n = 1, 2 and for i = [n/2]. So let n � 3 and
i < [n/2]. We have the Cartesian diagram

Pi ⇥ S1,n�2i �! Pi ⇥ Pn�2i??ydi,n

??ydi,n

Si+1,n �! Si,n

in which the horizontal maps are inclusions, and di,n induces a homeomor-
phism between Pi ⇥ Pn�2i � Pi ⇥ S1,n�2i and Si,n � Si+1,n. Hence the di-
agram represents a 2-cubical variety which is of cohomological descent (cf.
Lemma 5.17) and by Theorem 5.35 we have the exact sequence

. . .! Hk(Si,n)! Hk(Pi⇥Pn�2i)�Hk(Si+1,n)
�⇥�

���! Hk(Pi⇥S1,n�2i)! . . .

We will show that the map � ⇥ � is surjective. To see this, first observe that
� and � are Q-algebra homomorphisms. The target is the degree k part of
the subalgebra of H⇤(Pi ⇥ P1 ⇥ Pn�2i�2) ' Q[�i, �1, µn�2i�2] generated by
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�i, 2�1 + µn�2i�2 and µn�2i�2

n�2i�2
. The first two generators are in the image

of � whereas the last one is in the image of �. This shows that the long
exact sequence above splits into short exact sequences and that Hk(Si,n) is
pure of weight k. Hence H⇤(Si,n) is a subalgebra of H⇤(Pi ⇥ Pn�2i), and
its image equals ��1(Im �). Finally note that �(2�i+1 + µn�2i�2) = 2�i +
2�1 + µn�2i�2 = �(2�i + µn�2i) and �(µn�2i

n�2i
) = 0. Hence H⇤(Si,n) contains

2�i +µn�2i and µn�2i

n�2i
. That these indeed generate H⇤(Si,n) now follows from

a dimension count, which is left to the reader.

5.3.3 Restriction on the Hodge Numbers.

We prove some properties of the Hodge numbers of the mixed Hodge structure
which we just defined.

Fig. 5.5. The possible Hodge numbers when k  n

compact

q

k

p
k

smooth

Theorem 5.39. Let U be a complex algebraic variety of dimension n. Suppose
that a Hodge number hpq of Hk(U) is non-zero. Then
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i) 0  p, q  k;
ii) If k > n then k � n  p, q  n;
iii) If U is smooth then p + q � k;
iv) If U is compact, then p + q  k.

Proof. Choose a compactification Y of U and a cubical hyperresolution X• of
(Y, Y � U) such that dim Xr  n� r for all r. This exists by Theorem 5.26.

Suppose hpqHk(U) is non-zero. Then by the weight spectral sequence,
hpq(Hk�m�2r(Dr(m+r))(�m�r)) is non-zero for some m and some r � 0, i.e.
hp�m�r,q�m�r(Hk�m�2r(Dr(m + r)) is non-zero for some r, m. This implies
0  p, q  k. To prove the second statement, we use that dim Dr(m + r) 
n � m � 2r. The statement certainly holds for smooth compact varieties.
Moreover k > n implies that k�m� 2r > n�m� 2r � dim Dr(m + r), so if
hp�m�r,q�m�r(Hk�m�2r(Dr(m+r)) is non-zero and k > n then p�m�r is in
the sub-interval [k�m�2r�dim Dr(m+r),dim Dr(m+r)] ⇢ [k�n, n�m�2r]
so

p 2 [k � n + m + r, n� r] ⇢ [k � n, n] .

If U is smooth, we can use Proposition 4.20. If U is compact, Dr = ? for all
r and GrW

m
Hdg•(X•) = 0 for m > 0. ut

We want to reformulate this also in terms of weights. We first introduce
the following concept:

Definition 5.40. Weight m occurs in a mixed Hodge structure (H,W,F )
if GrW

m
6= 0. The mixed Hodge structure is pure of weight m if m is the

only weight which occurs.

Let X be an algebraic variety. We have the following table of weights which
may occur.

Table 5.1. Table of weights on H
k(X)

general smooth compact
k  n = dim X [0, 2k] [k, 2k] [0, k]

k � n [2k � 2n, 2n] [k, 2n] [2k � 2n, k]

Theorem 5.41. Let f : Z ! U be a surjective morphism of compact algebraic
varieties. Then the induced map

f⇤ : GrW

k
Hk(U)! GrW

k
Hk(Z)

is injective for all k � 0.
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Fig. 5.6. The possible Hodge numbers when k > n

compact

q

n

k � n

p
nk � n

smooth

Proof. We proceed by induction on dim U . The statement is certainly true for
dim U = 0. Also, it holds for U and Z smooth, by Theorem 2.29. Suppose the
statement of the theorem holds for all U with dim U < k. Let f : Z ! U be
as above with dim U = k. We have a diagram

Z̃ �! Ũ  � D??yp

??yq

??y
Z �! U  � ⌃

where p and q are resolutions and the square on the right hand side is a
discriminant square. As D is compact, GrW

k
Hk�1(D) = 0. Hence, by Theo-

rem 5.35 we have the exact sequence

0! GrW

k
Hk(U)! GrW

k
Hk(⌃)�Hk(Ũ)! GrW

k
Hk(D) .
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As dim ⌃ < k we get that GrW

k
Hk(⌃) ! GrW

k
Hk(D) is injective. We con-

clude that GrW

k
Hk(U) ! Hk(Ũ) is injective. As also Hk(Ũ) ! Hk(Z̃) is

injective, we get the injectivity of GrW

k
Hk(U) ! Hk(Z̃) which in turn im-

plies the injectivity of GrW

k
Hk(U)! GrW

k
Hk(Z). ut

Corollary 5.42. Let f : X̃ ! X be a resolution of a compact algebraic variety
X. Then for all k 2 N:

Wk�1H
k(X) = Ker[f⇤ : Hk(X)! Hk(X̃)] .

Proof. This follows from the injectivity of GrW

k
Hk(X)! Hk(X̃). ut

Corollary 5.43. Let u : Y ! X be a surjective morphism of compact alge-
braic varieties. Suppose that Hk(Y ) is pure of weight k. Then

Wk�1H
k(X) = Ker[u⇤ : Hk(X)! Hk(Y )] .

Proof. There exists a diagram

Ỹ
ũ�! X̃??yg

??yf

Y
u�! X

where g and f are resolutions of singularities. It induces a diagram

Hk(Ỹ ) ũ
⇤
 �� Hk(X̃)x??g

⇤
x??f

⇤

Hk(Y ) u
⇤
 �� Hk(X)

in which the maps ũ⇤ and g⇤ are injective. Hence Ker(u⇤) = Ker(f⇤) =
Wk�1Hk(X). ut

5.4 Cup Product and the Künneth Formula.

We discuss mixed Hodge theoretic properties for the Künneth formula (The-
orem B.7) for products of two complex algebraic varieties U and V .

Theorem 5.44 (Künneth respects mixed Hodge structures). Let U
and V be complex algebraic varieties. There is a natural isomorphism of mixed
Hodge structures

M

p+q=k

Hp(U ; Q)⌦Hq(V ; Q)! Hk(U ⇥ V ; Q).

We have
�Hdg(U ⇥ V ) = �Hdg(U)�Hdg(V ).
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Before giving the proof, let us deduce that cup-products respect mixed Hodge
structures. Indeed, taking U = V and composing with the diagonal � : U !
U ⇥ U we find:

Corollary 5.45. Let U be a complex algebraic variety. Cup product

Hi(U)⌦Hj(U)! Hi+j(U)

is a morphism of mixed Hodge structures.

Next we need to explain how the Künneth theorem is proved in topology. On
ordered pairs of topological spaces the two functors

F : (X, Y ) 7! S•(X ⇥ Y )
G : (X, Y ) 7! [S•(X)⌦ S•(Y )]

are related by the transpose of Alexander-Whitney homomorphism (B–7)

h = tA : [S•(X)⌦ S•(Y )]����! S•(X ⇥ Y )

which is in fact a natural transformation from G to F . The Künneth formula
essentially follows by showing that for all ordered pairs of topological spaces
(X,Y ) the transformation h(X,Y ) induces a homotopy equivalence

h(X,Y ) : [S•(X)⌦ S•(Y )]! S•(X ⇥ Y ).

What we have to bear in mind is that h is the realisation of the Künneth
isomorphism on the level of singular chains, but we could have done the same
on the level of Godement resolutions.
Proof of the theorem: We let X, Y be a compactification of U respectively
V . We set D :=X � U and E :=Y � V . We then construct a semi-simplicial
resolution of (X ⇥ Y,D ⇥ Y [ X ⇥ E) starting from given A-cubical hyper-
resolution X(I) of (X,D) and a B-cubical hyperresolution Y (J) of (Y,E).
We want to construct a semi-simplicial variety on the first barycentric subdi-
vision of ⇤A ⇥ ⇤B . To do this, observe that its vertices correspond to pairs
�I ⇥�J , I ⇢ A and J ⇢ B and any k simplex is determined by a unique flag
�I0
⇥�J0

⇢ · · · ⇢ �Ik ⇥�Jk of length k. So to any such flag F corresponds
a simplex �F . Defining

(X ⇥ Y )F :=X(i(F ))⇥ Y (j(F ))

we get in a natural way a semi-simplicial variety with an augmentation

✏F : (X ⇥ Y )F ! X ⇥ Y.

The maximal element in the flag F , �Ik ⇥�Jk is denoted �i(F ) ⇥�j(F ). As
we observed, this corresponds to a vertex of the barycentric subdivision and
the star of this vertex is the union of all simplices whose flags with maximal
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element corresponding exactly to this vertex. It follows that the geometric
realization of (X ⇥ Y )F is homeomorphic to the product |X•| ⇥ |Y•| of the
geometric realizations of the semi-simplicial varieties associated to X(I) and
Y (J). So we see that the above augmented semi-simplicial variety is of coho-
mological descent.

Let us now put

(X ⇥ E [D ⇥ Y )F :=X(i(F ))⇥ E(j(F )) [D(i(F ))⇥ Y (j(F )).

Making the identification

R(✏(i(F )⇥ j(F )))⇤Hdg•(X(i(F ))⇥ Y (j(F )) log(X ⇥ E [D ⇥ F )F ) =
R(✏F )⇤Hdg•((X ⇥ Y )F log(X ⇥ E [D ⇥ F )F ),

we get a morphism of mixed Hodge complexes of sheaves

R✏⇤Hdg•(X• log D•) ⇥ R✏⇤Hdg•(Y• log E•)
�! R✏⇤ (Hdg•(X ⇥ Y )F log(X ⇥ E [D ⇥ Y )F )) .

Using Proposition 3.21, on the level of mixed Hodge complexes this yields a
morphism

R� (✏⇤Hdg•(X• log D•))⌦R� (✏⇤Hdg•(Y• log E•))
h(X,D;Y,E)

��������! R� (Hdg•(X ⇥ Y )F log(X ⇥ E [D ⇥ Y )F ))

which is functorial in (X,D) and (Y, E) giving a natural transformation h
between the functor

G(U, V ) :=R� (✏⇤Hdg•(X• log D•))⌦R� (✏⇤Hdg•((Y• log E•))

which puts a mixed Hodge structure on the cohomology of the tensor product
of the De Rham complexes for U and V , and the functor

F (U, V ) :=R� (Hdg•(X ⇥ Y )F log(X ⇥ E [D ⇥ Y )F ))

which does the same for the cohomology of U ⇥ V .
On the level of the (non-filtered) Godement resolutions of the constant

sheaf Q, and in the appropriate derived categories, these functors and the
natural transformation h between them are the same as in the topological
setting we discussed just before this proof. So h, by definition a morphism of
mixed Hodge complexes, induces the Künneth isomorphism in cohomology.

This proof, combined with (III–12) also gives the formula for the Hodge
characters. ut

5.5 Relative Cohomology

5.5.1 Construction of the Mixed Hodge Structure

Let f : X ! Y be a continuous map. The map Hi(Y )
f
⇤

��! Hi(X) fits in a
long exact sequence
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· · ·! Hi�1(X)! H̃i(Cone•(f))! Hi(Y )
f
⇤

��! Hi(X)! · · ·

where Cone•(f) is the mapping cone of f , cf. (B–37). Moreover, (Theo-
rem B.22) if f• : S•Y ! S•X is the map induced by f on the level of
singular co-chains, then

H̃i(Cone•(f)) ' Hi�1(Cone•(f•)) .

Now suppose that we have a morphism of varieties f : U ! V . We complete
it to a diagram

U �! Y
⇡Y �� Y•??yf

??yf

??yf•

V �! Z
⇡Z �� Z•

where Y and Z are compactifications of U and V and ⇡Y : Y• ! Y and
⇡Z : Z• ! Z are cubical hyperresolutions of (Y, Y � U) and (Z, Z � V )
respectively. We let D• = ⇡�1

Y
(Y � U) and E• = ⇡�1

Z
(Z � V ). Then we get a

morphism of mixed Hodge complexes of sheaves

f
⇤

: (R⇡Z)⇤Hdg•(Z• log E•)! f⇤(R⇡Y )⇤Hdg•(Y• log D•) .

We can use the mixed cone of f
⇤

to put a mixed Hodge structure on the
cohomology groups of Cone•(f); more precisely we have

H̃k(Cone•(f)) ' H
k�1(Z,Cone•(f

⇤

)) .

One obtains an exact sequence of mixed Hodge complexes of sheaves

0! Rf⇤(R⇡Y )⇤Hdg•(Y• log D•)! Cone•(f
⇤

)! (R⇡Z)⇤Hdg•(Z• log E•)[1]! 0

which makes the long exact cohomology sequence into an exact sequence of
mixed Hodge structures. The following is a special case:

Proposition 5.46. Let V be a complex algebraic variety and U ⇢ V a subva-
riety. The mixed Hodge structure on the cone of the inclusion U ,! V defines
mixed Hodge structures on Hk(V,U). One has

�Hdg(V,U) :=��Hdg(Cone•(f̄⇤)) = �Hdg(V )� �Hdg(U).

The long exact sequence in cohomology associated to the pair (V,U)

· · ·! Hk�1(U)! Hk(V,U)! Hk(V )! Hk(U)! . . .

is an exact sequence of mixed Hodge structures.

As to the weights, using Table 5.1, we conclude:
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Corollary 5.47. If U and V are smooth, Hk(V,U) has at most weights in
the range [k � 1, 2k] and if U and V are compact, at most in the range [0, k].

Remark 5.48. We shall see below (Corollary 6.28) that if V is compact and
smooth and U ⇢ V is open, the group Hk(V,U) has at most weights in the
range [k, 2k].

For functoriality, the following is useful:

Observation 5.49. For any commutative diagram of varieties (or 2-cubical
variety)

U
f

�! V??yg

??yh

U 0
f
0

��! V 0

we obtain a morphism of mixed Hodge structures

(g, h)⇤ : H⇤(Cone•(f 0))! H⇤(Cone•(f)).

Corollary 5.50. Consider a pair (X, T ) where X is an algebraic variety and
T a closed subvariety of X. Let U = X � T

j

�! X be the inclusion. There is a
mixed Hodge structure on

H⇤

T
(X) :=H⇤(X, U) = H̃⇤(Cone•(j))

such that the sequence

. . .! Hk

T
(X)! Hk(X)! Hk(U)! Hk+1

T
(X)! . . .

becomes an exact sequence of mixed Hodge structures.

We can also look at triples (X, A,B) of a complex algebraic variety X with
closed subvarieties B ⇢ A:

Corollary 5.51. The inclusions i : (A, B)! (X, B) and j : (X,B)! (X,A)
induce a long exact sequence of mixed Hodge structures

· · ·! Hk(X,A)
j
⇤

��! Hk(X, B) i
⇤
��! Hk(A, B) ��! Hk+1(X, A)! · · · .

5.5.2 Cohomology with Compact Support

Definition 5.52. Let U be an algebraic variety with compactification X. put
T = X�U and let i : T ,! X be the inclusion. The cohomology group Hk

c
(U)

of U with compact supports is given a mixed Hodge structure through the
isomorphism (see Cor. B.14)

Hk

c
(U) ⇠�! Hk(X, T ).
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The Hodge-Grothendieck character for compact support is defined
as

�c

Hdg
(U) :=�Hdg(X, T ) = �Hdg(X)� �Hdg(T ) (V–18)

with associated Hodge-Euler polynomial Phn
��c

Hdg
(U) = eHdg(X)� eHdg(T ).

The invariance of the mixed Hodge structure follows from

Proposition 5.53. Let ⇡ : Y ! X be a proper modification with discriminant
contained in T and let E = ⇡�1(T ) Then the natural map

⇡⇤ : Hk(X, T )! Hk(Y,E)

is an isomorphism of mixed Hodge structures.

Proof. We already know that ⇡⇤ is a morphism of mixed Hodge structures. It
remains to be shown that it is an isomorphism of groups. Let VT be a closed
tubular neighbourhood of T in X such that the inclusion of T into VT is a
homotopy equivalence. Let UT be the interior of VT . Put VE = ⇡�1(VT ) and
UE = ⇡�1(UT ). Then

Hk(X,T ) ' Hk(X,VT ) ' Hk(X � UT , VT � UT )
# '

Hk(Y,E) ' Hk(Y, VE) ' Hk(Y � UE , VE � UE)

because by the properness of ⇡, the inclusion of E into VE is also a homotopy
equivalence.

Alternatively, observe that we are in the situation of a discriminant square,
and that the associated 2-cubical variety is of cohomological descent according
to Lemma-Definition 5.17. Consider this square as a morphism of pairs; then
this induces an isomorphism on the cohomology of these pairs. ut

As to weights, an immediate application of Corollary 5.47 gives:

Proposition 5.54. The above mixed Hodge structure on Hk

c
(U) has at most

weights in the interval [0, k]. Furthermore, the natural map Hk

c
(U)! Hk(U)

is a morphism of mixed Hodge structures. In fact, with X a compactification
of U , it is the composition of the morphisms Hk

c
(U)! Hk(X)! Hk(U). In

this set-up we have the exact sequence of mixed Hodge structures

. . .! Hk�1(X)! Hk�1(T )! Hk

c
(U)! Hk(X)! . . .

where T = X � U .

The exact sequence for triples (Cor. 5.51) yield exact sequences of mixed
Hodge structures for cohomology with compact support:

· · ·! Hk

c
(U � V )! Hk

c
(U)! Hk

c
(V )! Hk+1

c
(U � V )! · · · ,
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where V is closed in U . Indeed, if Ū is a compactification of U , V̄ the closure
of V in Ū , S = Ū � U , T = V̄ � V this is the exact sequence for the triple
(Ū , V̄ [S, S). The additivity of the Hodge-Grothendieck characters (and hence
for the Hodge-Euler polynomials) (V–18) in the setting of compact support
follows immediately from this:

Proposition 5.55. Let U be a complex algebraic variety which is the disjoint
union of two locally closed subvarieties U1 and U2. Then

�c

Hdg
(U) = �c

Hdg
(U1) + �c

Hdg
(U2).

Remark 5.56. This has a motivic interpretation as follows. Let K0(Var) be
the free abelian group on isomorphism classes of complex algebraic varieties
modulo the so-called scissor relations where we identify the class [X] of X
with [X�Y ]+[Y ] whenever Y ⇢ X is a closed subvariety. The direct product
being compatible with the scissor relation makes K0(Var) into a ring. Then
there is a well defined ring-homomorphism

�c

Hdg
: K0(Var)! K0(hs)

extending the Hodge-Grothendieck characteristic.

We deduce the following theorem of Durfee [Du87] and Danilov and Khovan-
skii [D-K]:

Corollary 5.57. Let X be an algebraic variety, which is the disjoint union of
locally closed subvarieties X1, . . . ,Xm. Then

�c

Hdg
(X) =

mX

i=1

�c

Hdg
(Xi)

and similarly for the Hodge-Euler polynomials.

Example 5.58. Let Tn = (C⇤)n be an n-dimensional algebraic torus. Then
ec

Hdg
(T 1) = uv � 1 so ec

Hdg
(Tn) = (uv � 1)n. Consider an n-dimensional toric

variety X. It is a disjoint union of Tn-orbits. Suppose that X has sk orbits of
dimension k. Then

ec

Hdg
(X) =

nX

k=0

skec

Hdg
(T k) =

nX

k=0

sk(uv � 1)k.

If X has a pure Hodge structure (e.g. if X is compact and has only quotient
singularities) then this formula determines the Hodge numbers of X.

Historical Remarks. In [Del74] Deligne defines a functorially mixed Hodge struc-
ture on the category of algebraic varieties. His treatment uses simplicial resolutions,
while we base our treatment on the cubical version as introduced by Navarro Aznar
and explained in [G-N-P-P].
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Singular Varieties: Complementary Results

In § 6.1, following Arapura [Ara], we put a mixed Hodge structure on the Leray
filtration. For technical reasons, this only works in the quasi-projective setting. For
the most general statement we refer to Chapter 14, Corollary 14.14.

In § 6.2.3 and § 6.3 we return to the general setting and we study the behaviour
of the mixed Hodge structure which we constructed in Chapter 5 under cup products
and duality. As one may expect, this generalizes what we already have seen in the
smooth compact situation (Chapt. 1 § 2.4). As an application, we prove the semi-
purity of the link in § 6.2.3.

6.1 The Leray Filtration

We give a sketch of Arapura’s proof [Ara] that the Leray filtration for a
morphism f : X ! Y between quasi-projective varieties is a spectral sequence
of mixed Hodge structures. To start, note that the sheaves Rqf⇤ZX

are locally
constant on the strata of a suitable finite analytic stratification of Y . We give
these a name:

Definition 6.1. A sheaf F on a complex analytic space is finitely con-
structible if there is a finite stratification (see § C.1.1) by closed analytic
subspaces such that F restricts to a locally constant sheaf on the open strata.
We say that the filtration is adapted to F .

For any finitely constructible F on X adapted to X = Xm � · · · � X0 we
can construct a filtration adapted to the stratification, the so-called skeletal
filtration as follows. With k↵ : X �X↵ ,! X the inclusion we set

Sk↵+1F := (k↵)!k⇤↵F ↵ � 0
Sk0F := F .

So Sk↵+1F is the same as F over the open set X �X↵, but it is zero on the
closed stratum X↵. The skeletal filtration is the decreasing filtration which,
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starting from F kills part of F on bigger and bigger closed substrata. Hence
Gr↵

Sk
F is just F suitably restricted to the open stratum X↵�X↵�1. The spec-

tral sequence defined by this filtration on the global sections is the skeletal
spectral sequence E↵,�

r
(X,SkF). This spectral sequence translates into the

language of exact couples. Indeed, Hq(X,Sk↵+1F) = Hq(X,X↵;F), and from
the above interpretation of the gradeds Hq(X,Gr↵

Sk
F) = Hq(X↵, X↵�1;F),

so that Prop. A.41 implies

Proposition 6.2. The skeletal spectral sequence is the spectral sequence for
the bigraded exact couple (D,E) with D↵,� = H↵+�(X,X↵�1;F) and E↵,� =
H↵+�(X↵, X↵�1;F).

If the Leray spectral sequence would be isomorphic to a skeletal spectral
sequence for the sheaf Q

X
with respect to a filtration on X which is canonically

related to f , we would have a geometric and functorial description of the Leray
filtration. It turns out that this is not possible in general. To remedy this, we
replace X by a quasi-projective variety X 0 which is the fibre product of X and
a suitable a�ne variety Y 0 mapping to Y via the so-called Jouanolou-trick:

Theorem ([Jo, 1.5]). Let X be a quasi-projective variety. There exists an
a�nement for X, i.e. an a�ne variety V and a morphism h : V ! X
whose fibres are isomorphic to the same complex a�ne space.

A�nement behaves well with respect to fibre products: if f : X ! Y is a
morphism between quasi-projective varieties, h : Y 0 ! Y an a�nement of
Y and X 0 = X ⇥Y Y 0 the fibre product, then the induced morphism f 0 :
X 0 ! Y 0 has the same fibres as f and is homotopy equivalent to f : X ! Y ;
if moreover V is an a�nement of X 0 the canonical morphism V ! Y 0 is
homotopy equivalent to f .

The first assertion guarantees that the terms of the Leray spectral sequence
for f and for f 0 are the same so that we may indeed replace f by its a�nement
f 0. The second assertion can be paraphrased by saying that any morphism
between quasi-projective varieties is homotopic to a morphism between their
a�nements. It is important for checking functoriality.

By the previous argument we may thus assume that Y is a�ne. Of course,
constant sheaves are finitely constructible with respect to any stratification,
and to capture the terms of the Leray-filtration, the main idea is to take a
stratification of X which is the pull back of a stratification on Y which is
cellular with respect to all of the direct images Rqf⇤ZX

:

Definition 6.3. Let F be a finitely constructible sheaf adapted to a stratifi-
cation {X↵}. Put Xo

↵
= X↵ �X↵�1, j↵ : Xo

↵
,! X↵ and F↵ = (j↵)!(F |Xo

↵
).

We say that the stratification is cellular with respect to F if Hq(X↵,F↵) = 0
unless q = ↵ = dimX↵.

This last property is crucial to show that the skeletal spectral sequence for
the so constructed stratification is directly related to the spectral sequence for
canonical filtration on the hyperdirect image Rf⇤ZX

. Since this last spectral
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sequence is the Leray spectral sequence the result follows. The proof of this
step is rather straightforward (see [Ara, Cor. 3.10 and Lemma 3.13]).

It thus remains to show that such cellular stratifications exist. This turns
out to be a consequence of a central and non-trivial vanishing result due to
Nori [Nori] who attributes it to Beilinson. See [Ara, Lemmas 3.4– 3.7].

Summarizing we then have:

Theorem 6.4. Let f : X ! Y be a morphism of quasi-projective varieties
and let h : Y 0 ! Y be an a�nement. Let f 0 : X 0 ! Y 0 be the fibre product,
inducing g : X 0 ! X. Let F be a finitely constructible sheaf on X and let F 0 =
f 0�1F . Then there exists a finite stratification of Y 0 by closed subvarieties Y 0

k

such that putting X 0

k
= f�1Y 0

k
, the Leray spectral sequence for f and F is

isomorphic to the spectral sequence for the bigraded exact couple (D,E) with
D = D1 = Hp+q(X 0, X 0

p�1
;F 0) and E = E1 = Hp+q(X 0

p
, X 0

p�1
;F 0).

This result explains the geometric nature of the Leray spectral sequence and
implies the main result in Hodge theory we are after:

Theorem 6.5. Let f : X ! Y be a morphism between quasi-projective alge-
braic varieties. Then the Leray-spectral sequence Er(f) :=Er(f, Z

X
) for the

constant sheaf Z
X

is a spectral sequence of mixed Hodge structures and, in
particular, the Leray filtration L•[Hk(Y )] on Hk(Y ) is a functorial filtra-
tion of mixed Hodge structures. Functoriality means that given a morphism
h : Y 0 ! Y , letting f 0 : X 0 ! Y 0 be the fibre product inducing g : X 0 ! X,
then, for all r � 2 the induced homomorphisms h⇤ : Ep,q

r
(f 0) ! Ep,q

r
(f)

are morphisms of mixed Hodge structures. In particular, the induced homo-
morphism h⇤ : Hk(Y 0) ! Hk(Y ) restricts to a morphism Ls[Hk(Y 0)] !
Ls[Hk(Y 0)], s � 0 of mixed Hodge substructures.

Proof (Sketch). As explained above, by Theorem 6.4 we may assume that Y
is itself a�ne and admits a finite stratification by closed subvarieties Yk such
that the Leray spectral sequence is isomorphic to the spectral sequence for
the bigraded exact couple

�
Hp+q(X,Xp�1), Hp+q(Xp, Xp+1)

�
, Xk = f�1Yk.

The maps in this couple come from the inclusions for triples (X, A = Xp, B =
Xp�1). But the maps in the long exact sequence in cohomology for the pairs
(X,A) and (A, B) are all morphisms of mixed Hodge structures. This proves
the first assertion.
The functoriality of Arapura’s construction is based on the functoriality of
the skeletal filtration and the fact, pointed out just before the statement of
the theorem, that a morphism between quasi-projective varieties is homotopic
to a morphism between their a�nements. Details are left to the reader. ut

Remark. Functoriality holds in a more general form for commutative squares
which are not necessarily fibre products. The following argument has been
communicated to us by Alexei Gorinov.
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Since functoriality holds for pullbacks, it remains to consider the case of
two morphisms with the same base, i.e., suppose we have fi : Xi ! Y , i = 1, 2
and f : X1 ! X2 such that f1 = f2

�f . By pulling everything back to an a�ne-
ment of Y , we can assume that Y is a�ne. Now consider a stratification of
Y that is cellular with respect to all direct images of the constant sheaf Z

Xi

under fi, i = 1, 2. The morphism between the corresponding exact couples
induces a morphism between the associated skeletal spectral sequences and
hence respects the mixed Hodge structures by functoriality. Then apply The-
orem 6.4.

For pairs we have:

Theorem 6.6 ([Ara, Thm. 4.1]). Let f : U ! V a morphism of quasi-
projective varieties and T ⇢ V a closed subvariety. Set Z = f�1(T ) and let
j : U � Z ,! U , j0 : V � T ,! V be the inclusions. The isomorphisms

j0
!
Rqf⇤Z ' Rqf(j!Z)

induce a Leray spectral sequence for pairs Er(f, T ) converging to the
relative cohomology of the pair (V, T ). This is a spectral sequence of mixed
Hodge structures in a functorial fashion.

For cohomology with compact support, we take good compactifications X of
U and Y of V respectively and a morphism g : X ! Y extending f . Applying
the theorem to the map of pairs (X,X � U)! (Y, Y � V ) we deduce:

Corollary 6.7. Let f : U ! V a morphism of quasi-projective varieties.
Then the Leray spectral sequence for cohomology with compact support Er,c(f)
converging to cohomology of Y with compact support is a spectral sequence of
mixed Hodge structures in a functorial fashion.

We end by stating a non-trivial consequence of the proof of the preceding
theorems

Theorem 6.8 ([Ara, Thm. 4.5]). If f : X ! Y is a projective morphism
between quasi-projective varieties, then Hi

c
(Y,Rjf⇤Z) has weights  i + j.

In fact, the Hodge numbers hp,q[Hi

c
(Y,Rjf⇤Z)] are non-zero only for p �

i + j � dim X, q � i + j � dim X and p + q  i + j.

6.2 Deleted Neighbourhoods of Algebraic Sets

6.2.1 Mixed Hodge Complexes

Let X be a complex algebraic variety and Z ⇢ X a closed compact algebraic
subset which contains the singular locus of X. An algebraic neighbourhood
of Z in X is defined as ↵�1([0, �]) where � > 0 is su�ciently small and ↵
is a rug function, i.e. a proper non-negative real algebraic function on a
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neighbourhood of Z in X with ↵�1(0) = Z. See [Du83]. If X is embedded in
projective space and Z is smooth we can use the Fubini-Study metric to define
↵ as the square of the distance function to Z; then an algebraic neighbourhood
is obtained by intersecting a su�ciently small tubular neighbourhood of Z in
projective space with X. A deleted neighbourhood of Z in X is defined
as the complement of Z in an algebraic neighbourhood T of it in X. The
boundary of an algebraic neighbourhood of Z in X is called its link in X. It
is homotopy equivalent to a deleted neighbourhood.

Let T ⇢ X be an algebraic neighbourhood of Z in X. We want to put a
mixed Hodge structure on the cohomology of T ⇤ = T �Z. We follow [Du83b].
Observe that deleted neighbourhoods behave well under proper modifications
with discriminant contained in Z: for a discriminant square

f�1(D)
j

�! X̃??yg

??yf

D
i�! X

with D ⇢ Z one has a one-to-one correspondence between deleted neighbour-
hoods of Z in X and of f�1(Z) in X̃. There always exists such a proper
modification such that X̃ is smooth and f�1(Z) = E a divisor with simple
normal crossings on X̃. Any two of these are dominated by a third one, so
to obtain a well-defined mixed Hodge structure on H⇤(T ⇤) it su�ces to deal
with the case that Z ⇢ X is a divisor with strict normal crossings and to show
that there is a pull-back morphism in the case of one normal crossing situation
dominating another. We will carry out the former, and leave the latter as an
exercise to the reader.

So suppose that D ⇢ X is a compact divisor with simple normal crossings,
that T is an algebraic neighbourhood of D and T ⇤ = T �D. Let j : T ⇤ ! T
and i : D ! T denote the inclusion maps. Then

H⇤(T ⇤) ' H
⇤(T,Rj⇤ZT⇤) ' H

⇤(D, i⇤Rj⇤ZT⇤).

The first isomorphism is a special case of (B–21), and the second one holds be-
cause D has a fundamental system of neighbourhoods all homotopy equivalent
to T .

Let us further note that we have a resolution

0! Q
D
! (a1)⇤Q

D(1)
! (a2)⇤Q

D(2)
! · · ·

coming from the standard cubical hyperresolution ✏ : D• ! D of D where as
before D• is shorthand for the cubical variety {DI}.

We use these remarks to construct a mixed Hodge complex of sheaves:

Theorem 6.9. In the above setting, a mixed Hodge complex of sheaves Hdg•(T ⇤)
Z

on T ⇤ can be defined by setting

– Hdg•(T ⇤
Z
) := i⇤Rj⇤ZT⇤ ;
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– Hdg•(T ⇤
Q
) :=

�
i⇤Rj⇤Q

T⇤
� ✏⇤Q

D•

�
/Q

D
. The first summand has only non

negative weights and the second only non-positive ones; the embedding of
Q

D
is given by (↵,��) with ↵ the identification ⌧0i⇤Rj⇤Q

T⇤
= Q

D
and

� the inclusion Q
D
! a⇤Q

D(1)
.

– Hdg•(T ⇤
C
) =

�
⌦•

X
(log D)� a⇤⌦•

D•

�
/⌦•

X
on which the filtrations W and F

are defined in the obvious way.

The exact sequence

Hdg•(D) = W0Hdg•(⇤)! Hdg•(T ⇤)! Hdg•(T ⇤)/W0

gives rise to the long exact sequence of cohomology

· · ·! Hk(D)! Hk(T ⇤)! Hk+1

D
(T )! Hk+1(D)! · · · (VI–1)

Proof. The proof is straightforward. We give some hints and remarks only.
First of all, one might be tempted to take for the Q-component the complex
i⇤Rj⇤Q

T⇤
together with its canonical filtration ⌧ , but this does not work, as

⌧0i⇤Rj⇤Q
T⇤

= Q
D

does not give rise to a pure Hodge structure, unless D is
itself smooth.

With the proposed modification, we obtain a mixed Hodge complex of
sheaves essentially because

Grm

W
Hdg•(T ⇤

Q
) =

(
Rmj⇤Q

T⇤
[�m] ' (am)⇤Q

D(m)
(�m)[�m] if m > 0;

(a1�m)⇤Q
D(1�m)

[m] if m  0. ut

Remark 6.10. The mixed Hodge complex of sheaves Hdg•(T ⇤) depends only
on the first infinitesimal neighbourhood of D in X. In fact, the inclusion
D ⇢ X determines a logarithmic structure on D (called a logarithmic em-
bedding of D) and all data of Hdg•(T ⇤) can be constructed from this loga-
rithmic structure. See [Ste95].

6.2.2 Products and Deleted Neighbourhoods

In this section we show first that the mixed Hodge structure on the deleted
neighbourhood of an algebraic subvariety behaves well with respect to cup
product: the mappings

Hk(T ⇤)⌦H`(T ⇤) [! Hk+`(T ⇤)

are morphisms of mixed Hodge structures. Here T is an algebraic neighbour-
hood of a divisor D with strict normal crossings in a smooth variety X, and
D is compact. The mixed Hodge complex of sheaves Hdg•(T ⇤) appears not to
be suitable to define a cup product. We have to replace it by a sheaf complex
which has also a multiplicative structure.

We first have the following
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Lemma 6.11. Let C be an irreducible component of D(m) for some m. Then
C is a smooth subvariety of X. Let IC ⇢ OX denote its ideal sheaf. Then
IC⌦•

X
(log D) is a subcomplex of ⌦•

X
(log D).

Proof. Let P 2 C. Choose local holomorphic coordinates (z1, . . . , zn) on X
centred at P such that IC,P = (z1, . . . , zk)OX,P and ID,P = (z1 · · · zl)OX,P

for some k  l  n. For ! 2 IC⌦p

X
(log D)P write ! =

P
m

i=1
zi!i with

!i 2 ⌦p

X
(log D)P for i = 1, . . . , k. Then

d! =
mX

i=1

zi(
dzi

zi

^ !i + d!i) 2 IC⌦p+1

X
(log D)P . ut

We denote the quotient complex ⌦•

X
(log D)/IC⌦•

X
(log D) by ⌦•

X
(log D)⌦

OC . We equip it with the filtrations W and F as a quotient of ⌦•

X
(log D).

Theorem 6.12. Let iC : C ! X and j : X �D ! X be the inclusion maps.
Then the complex ⌦•

X
(log D)⌦OC is quasi-isomorphic to i⇤

C
Rj⇤CX�D

.

Proof. We have an isomorphism (⌦•

X
(log D), W ) ' (Rj⇤CX�D

, ⌧) in the
filtered derived category of bounded below complexes of sheaves of C- vector
spaces on X, which by restriction to C gives an isomorphism

(i⇤
C

⌦•

X
(log D), W ) ' (i⇤

C
Rj⇤CX�D

, ⌧)

in the filtered derived category of bounded below complexes of sheaves of C-
vector spaces on C. It remains to be proven that the quotient map

(i⇤
C

⌦•

X
(log D), W )! (⌦•

X
(log D)⌦OC , W )

is a filtered quasi-isomorphism. To deal with this problem, note that for all
k � 0 the Poincaré residue map

resk : GrW

k
⌦•

X
(log D)! (ak�1)⇤⌦•

D(k)
[�k]

is an isomorphism of complexes (here D(0) :=X). It has components

resI : GrW

k
⌦•

X
(log D)! ⌦•

DI
[�k]

where I is a subset of A of cardinality k and DI :=
T

a2I
Da. It follows that

i⇤
C

GrW

k
⌦•

X
(log D) '

M

|I|=k

i⇤
C

C
DI

[�k] '
M

|I|=k

C
DI\C

[�k] .

Claim: the image of IC⌦p

X
(log D)\Wk⌦p

X
(log D) under the map resI coincides

with I⌦p�k

DI
+ dIC ^⌦p�k�1

DI
.

Assuming the claim, we find that resk induces an isomorphism

GrW

k
⌦•

X
(log D)⌦OC '

M

|I|=k

⌦•

DI\C
[�k] .
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Let us prove the claim. The map RI presupposes an ordering of the set A of
irreducible components of D. Write I = {i1, . . . , ik} with i1 < . . . < ik and
choose local coordinates (z1, . . . , zn) on X centred at P 2 C such that Dir

is defined near P by zr = 0 for r = 1, . . . , k and IC,P is generated by zj for
j 2 J . Put J1 = J \ {1, . . . , k} and J2 = J � J1. Also suppose that D is
defined near P by z1 · · · zl = 0. Then l � k and J ⇢ {1, . . . , l}.

For j 2 J2 choose ⌘i 2 ⌦p�k�1

DI ,P
and ⇣i 2 ⌦p�k

DI ,P
with lifts ⌘̃i and ⇣̃i in

⌦p�k�1

X,P
and ⌦p�k

X,P
respectively. Let

! =
X

j2J2

dz1

z1

^ · · · ^ dzk

zk

^ (dzj ^ ⌘̃i + zj ⇣̃j) .

Then ! 2 IC⌦p

X
(log D)P \Wk⌦p

X
(log D)P and

resI(!) =
X

j2J2

(dzj ^ ⌘j + zj⇣j) .

Also remark that resI0(!) = 0 if I 6= I 0 ⇢ A with |I|0 = k. Hence we have an
inclusion
M

I

(I⌦p�k

DI ,P
+ dIC ^⌦p�k�1

DI ,P
) ⇢ resk(IC⌦p

X
(log D)P \Wk⌦p

X
(log D)P ) .

To prove the reverse inclusion, we let ⇠i =
dzi

zi

if 1  i  l and ⇠i = dzi

if i > l. Also, for B = {b1, . . . , br} ⇢ {1, . . . , n} with b1 < · · · < br we put
⇠B = ⇠b1

^ · · ·^ ⇠br . With this notation, ⌦p

X
(log D)P is the free OX,P -module

with basis the ⇠B with |B| = p. We have

IC⌦p

X
(log D)P =

M

|B|=p

IC,P ⇠B

and

Wk⌦p

X
(log D)P =

M

|B|=p

Wk⌦p

X
(log D)P \OX,P ⇠B =

M

|B|=p

J(B, k)⇠B

where J(B, k) is an ideal of OX,P generated by square-free monomials.
For any B and any square-free monomial zE 2 J(B, k) with resI(zE⇠B) 6=

0 one has {1, . . . , k} ⇢ B and B \ {k + 1, . . . , l} ⇢ E. If moreover zE 2 IC,P

then J2 \ E 6= ?. Choose j 2 J2 \ E. If j 2 B then

zE⇠B = ±zE

dzj

zj

^ ⇠B�{j} = ±dzj ^ zE�{j}⇠B�{j} 2 dIC ^⌦p�1

X
(log D)P

so resI(zE⇠B) 2 dIC ^⌦p�k�1

DI
. On the other hand, if j 62 B then

resI(zE⇠B) = zjresI(zE�{j}⇠B) 2 IC⌦p�k

DI
. ut
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Corollary 6.13. H
k(C, ⌦•

X
(log D) ⌦ OC) ' Hk(TC � D; C) where TC is a

tubular neighbourhood of C inside X.

Corollary 6.14. One has a cohomological mixed Hodge complex Hdg•(C log D)
on C with

(Hdg•(C log D)
Q
, W ) = (i⇤

C
Rj⇤Q

X�D
, ⌧)

and
(Hdg•(C log D)

C
, W, F ) = (⌦•

X
(log D)⌦OC , W, F ) .

This defines a mixed Hodge structure on Hk(UC �D; C). Moreover, we have
W0Hdg•(log D) ' Hdg•(C) so

WkHk(UC �D) = Im[Hk(C) ' Hk(UC)! Hk(UC �D)] .

The data of all Hdg•(DI log D) for I ⇢ A give rise to a cohomological
mixed Hodge complex on the cubical variety D•. We define

Hdg•(D log D) = R✏⇤Hdg•(D• log D) .

This is a cohomological mixed Hodge complex on D such thatHdg•(D log D)
Q
'

i⇤
D

Rj⇤Q
X�D

. It gives a mixed Hodge structure on Hk(T ⇤) where T is a tubu-
lar neighbourhood of D. The spectral sequence

Epq

1
= H

q(Dp,Hdg•(Dp log D))) H
p+q(D,Hdg•(D log D))

can be considered as the Mayer-Vietoris spectral sequence corresponding to a
covering of T ⇤ by deleted neighbourhoods TDi �D.

Observe that we dispose of natural morphisms of cohomological mixed
Hodge complexes Hdg•(X log D) ! Hdg•(D log D) (which on cohomology
induces the restriction mapping Hk(X � D) ! Hk(T ⇤)) and Hdg•(D•) !
Hdg•(D log D) (which on cohomology induces the restriction mapping Hk(D)'
Hk(T )! Hk(T ⇤)). These morphisms induce a morphism

Hdg•(T ⇤)! Hdg•(D log D)

which is a weak equivalence.
There is a natural product

⌦•(D log D)⌦⌦•(D log D)! ⌦•(D log D)

constructed as follows. Observe that

⌦•(D log D) ' ⌦•

X
(log D)⌦OX ✏⇤OD•

where the first factor in the tensor product is a sheaf of di↵erential graded
algebras. Let us now also define the structure of a sheaf of di↵erential graded
algebras on ✏⇤OD• . Recall that the cubical variety D• depends on a chosen
ordering D1, . . . ,DN of the irreducible components of D which we fix from
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now on. The component DI of the semi-simplicial set given by the ordered
set I = (i0, . . . , ik), ik 2 [1, . . . , N ] then comes with a sign ✏(I), the sign of
the permutation of I needed to put the elements of I in increasing order. The
sheaf ODI as an OD-module is generated by the function eI , the characteristic
function of DI multiplied by ✏(I). To define a product structure its is su�cient
to say what the product of eI and eJ is. If I and J have one element in
common, we may assume that this is the first element. We set

eI ⇤ eJ =
⇢

0 if |I \ J | 6= 1
eK , K = (i0, I 0, J 0) if I \ J = i0, I = (i0, I 0), J = (i0, J 0).

The multiplications on ⌦•

X
(log D) and ✏⇤OD• then are both OX -linear and

graded commutative, so they induce a graded-commutative multiplication on
⌦•

D
(log D). It is left to the reader to verify that together with the di↵erential

this defines a sheaf of di↵erential graded algebras. This multiplication is com-
patible with the multiplication on i⇤Rj⇤Q

T⇤
which in turn induces the cup

product on H⇤(T ⇤).

6.2.3 Semi-purity of the Link

The following is a weak version of the semi-purity of the link:

Theorem 6.15. Let X be an algebraic variety of dimension n and let Z ⇢ X
be a compact subvariety of dimension s such that X � Z is nonsingular. Let
T ⇤ be a deleted neighbourhood of Z in X. Then the mixed Hodge structure
Hq(T ⇤) has weights  q + 1 if q < n� s and weights > q � 1 if q � n + s.

Proof. Let ⇡ : X̃ ! X be a resolution of X such that D = ⇡�1(Z) is a divisor
with strict normal crossings on X̃. Without loss of generality we may assume
that X is compact. Then X̃ is also compact. As the diagram

D �! X̃??y
??y⇡

Z �! X

is of cohomological descent, we have the long exact sequence

· · ·! Hk(X)! Hk(D)�Hk(Z)! Hk(X̃)! Hk+1(X)! · · · .

Combine this with the long exact sequence (VI–1)

· · ·! Hk(D)! Hk(T ⇤)! Hk+1

D
(T )! Hk+1(D)! · · · .

If k < n � s then H2n�k�1(D) is pure of weight 2n � k � 1, so by duality
Hk+1

D
(T ) is pure of weight k + 1. As Hk(D) has weights  k we find that

Hk(T ⇤) has weights  k + 1. Hence its dual space

H2n�1�k(T ⇤) ' Hom(Hk(T ⇤); Q(�n))

has weights � 2n� k � 1. ut



6.2 Deleted Neighbourhoods of Algebraic Sets 151

Remark 6.16. In fact, we expect that stronger inequalities for the weights are
valid:

Hq(T ⇤) has a mixed Hodge structure with weights
 q if q < n� s and with weights > q if q � n + s.

This would follow if one were able to prove that

Hq

D
(X̃) ,! Hq(D) for q  n� s

Remark 6.17. In the same notation as above, we also have the exact sequence
of mixed Hodge structures

· · ·! Hk(Z)! Hk(T ⇤)! Hk+1

Z
(X)! Hk+1(Z)! · · · . (VI–2)

This can be seen as follows: put

A := R⇡⇤Hdg•(X̃) B := Hdg•(Z)
C := R⇡⇤Hdg•(D•)) E := Hdg•(X̃ log D)

We have a natural morphism

µ : A�B ! C � E

such that Hi(Cone•(µ)) ' Hi+1

Z
(X). It restricts to

� : A�B ! C, µ0 : A! C � E

and Hi(Cone•(�)) ' Hi+1(X), while Hi(Cone•(µ0)) ' Hi(T ⇤). The exact
sequence (VI–1) results from the exact sequence

0! Cone•(A! D)! Cone•(A�B ! C �D)! Cone•(B ! C)! 0

whereas the sequence (VI–2) results from

0! Cone•(A! C �D)! Cone•(A�B ! C �D)! B ! 0.

Remark 6.18. If Z ⇢ X is a compact algebraic subset with neighbourhood T
and X�Z is smooth, then M := @T is a compact oriented manifold, homotopy
equivalent to a punctured neighbourhood U . Durfee and Hain [Du-H] have
shown that the cup product Hi(M) ⌦ Hj(M) ! Hi+j(M) is a morphism
of mixed Hodge structures. In the case of the link of an isolated singularity
(X,x) of dimension n this implies that this cup product is the zero map if
i, j < n but i + j � n. Indeed, by strong semi-purity in that case the source
of the cup product has weights at most i + j whereas the target has weights
at least i + j + 1.

This phenomenon has been used by McCrory [MC] and independently by
Durfee, Steenbrink and Stevens, to give a description of the weight filtration
of the link of a normal surface singularity in terms of Massey triple products.
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Since the cup product ↵ [ � is zero for all ↵,� 2 H1(M ; Q), the Massey
triple product h↵,�, �i can be defined for triples ↵,�, � 2 H1(M ; Q) as
follows. Select 1-cochains f and g such that df = ↵[ � and dg = � [ �. Then
h↵,�, �i is represented by f ^ � + ↵ ^ g. See also the discussion in §9.4. The
result is, that

W0H
1(M) = {↵ 2 H1(M) | h↵,�, �i = 0 for all �, � 2 H1(M)}.

For links of isolated singularities in higher dimensions the weight filtra-
tion is not a topological invariant in general, as certain examples show (see
[Ste-St]).

6.3 Cup and Cap Products, and Duality

6.3.1 Duality for Cohomology with Compact Supports

Next we show that for an algebraic variety U the cup product maps

Hi(U)⌦Hj

c
(U)! Hi+j

c
(U)

are morphisms of mixed Hodge structures. We deduce from this a duality
result due to Fujiki [Fuj]. See Corollary 6.28.

Remark that, since Hk

c
(U)! Hk(U) is a morphism of mixed Hodge struc-

tures, also the cup product on H(U) automatically becomes a morphism of
mixed Hodge structures. We knew this already (Corollary 5.45).

First assume that U = X, a compact algebraic variety and make use
of the fact that cup product preserves mixed Hodge structures. Let us put
a mixed Hodge structure on Hj(X) using the transpose of the Kronecker
homomorphism

Hj(X; Q) ⇠�! HomQ(Hj(X; Q); Q).

We then conclude:

Proposition 6.19. For a compact variety X

1) the cap products
Hi(X)⌦Hj(X)! Hj�i(X)

are morphisms of mixed Hodge structures;
2) the Poincaré duality homomorphisms

Hi(X)(n)! H2n�i(X), n = dimC X

are morphisms of mixed Hodge structures.
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Now replace X by any complex algebraic variety U . There are cup products

Hi(U)⌦Hj

c
(U)! Hi+j

c
(U)

(see § B.1.2) and we want to show that these respect mixed Hodge structures.
We first suppose that U is smooth and choose a smooth compactification

X of U such that X �U = D is a divisor with simple normal crossings on X.
We define

Hdg•(X,D) = Cone•(Hdg•(X)! Hdg•(D•)[�1]

where D• is shorthand for the cubical variety {DI} associated to D. Its C-
component is denoted by

⌦•

X,D
= Cone•(⌦•

X
! a⇤⌦

•

D•).

The above cup product now takes the shape

H
i(X,Hdg•(X log D))⌦H

j(X,Hdg•((X,D))! H
i+j(X,Hdg•(X, D))

which one would like to come from a morphism of sheaf complexes

Hdg•(X log D)⌦Hdg•(X, D)! Hdg•(X, D) .

This appears not to be possible. However, we will construct a mixed Hodge
complex of sheaves gHdg

•

(X, D) on X together with a quasi-isomorphism of
mixed Hodge complexes of sheaves Hdg•(X, D) ! gHdg

•

(X, D) and a mor-
phism

Hdg•(X log D)⌦Hdg•(X, D)! Hdg•(X, D)

which realizes the cup product on cohomology. This will prove that the cup
product under consideration is a morphism of mixed Hodge structures.

Set

gHdg
•

(X,D) = Cone•(Hdg•(X log D)! Hdg•(D log D))[�1] .

Note that the inclusions Hdg•(X) ! Hdg•(X log D) and Hdg•(D) !
Hdg•(D log D) induce a morphism of cohomological mixed Hodge complexes

� : Hdg•(X, D)! gHdg
•

(X,D) .

Lemma 6.20. The map induced by � on cohomology is an isomorphism.

Proof. By excision, the map Hk(X, D) ' Hk(X,UD)! Hk(X �D,UD �D)
is an isomorphism for all k. ut

Remark 6.21. As this lemma is true also locally on X, we may even conclude
that � is a quasi-isomorphism.
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Corollary 6.22. The cohomological mixed Hodge complexes Hdg•(X,D) and
gHdg

•

(X,D) determine the same mixed Hodge structure on Hk(X, D).

Proof. Indeed, � induces a morphism of mixed Hodge structures which is an
isomorphism of vector spaces, hence an isomorphism of mixed Hodge struc-
tures. ut

Now we proceed to the definition of the cup product on the level of com-
plexes. Write

⌦̃•

X,D
= gHdg

•

(X,D)
C

= Cone•(⌦•

X
(log D)! ⌦•

D
(log D))[�1].

For each component C of D• we have a natural cup product

µC : ⌦•

X
(log D)⌦C ⌦•

C
! ⌦•

X
(log D)⌦OC .

These are the components of a cup product

µ : ⌦•

X
(log D)⌦C ⌦•

X,D
! ⌦̃•

X,D

which is compatible with the filtrations W and F . It now follows that the cup
product maps

Hi(U)⌦Hj

c
(U)! Hi+j

c
(U)

are morphisms of mixed Hodge structures. This terminates the case where U
is smooth.

Let us now extend this to arbitrary U . So we choose a compactification
U ⇢ X, set D = X �U and choose an A-cubical resolution {(XI , DI)} of the
pair (X,D). As in the final subsection of § 5.3, let (X ⇥ X)F be the ”flag-
resolution” of X ⇥X. For simplicity, suppose that A is ordered and for I =
(i0, . . . , in) ⇢ A with i0 < · · · < in, we put Ik = (i0, . . . , ik and let F (I) be the
flag (I0⇥ I0, · · · , In⇥ In) and embed XI diagonally in XI ⇥XI = XF (I). This
defines a morphism of semi-simplicial schemes over the diagonal embedding

X•

�•��! (X ⇥X)•
# #
X

���! X ⇥X.

On XI ⇥XI the complex Hdg•(XI log DI) ⇥Hdg•(XI , DI) pulls back under
the diagonal embedding toHdg•(XI log DI)⌦Hdg•(XI , DI). The cup product
defines the map

Hdg•(XI log DI)⌦Hdg•(XI , DI)! gHdg
•

(XI , DI).

As we have just seen, this is a pairing of mixed Hodge complexes of sheaves.
This remains so after taking hyperdirect images under the augmentation. The
hypercohomology of the resulting complexes yields the desired cup product
pairing. We have shown:
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Theorem 6.23. Let U be a complex algebraic variety. The cup product pair-
ings

Hi(U)⌦Hj

c
(U)! Hi+j

c
(U)

are morphisms of mixed Hodge structures.

Remark 6.24. The restrictions ofHdg•(X log D),Hdg•((X,D) and gHdg
•

(X,D)
to X�D are all equal to Hdg•(X �D). Now consider the following situation:
Y is a compact complex algebraic variety with closed subvarieties Z and W
such that Y �(Z[W ) is smooth and Z\W = ?. Then there is a cup product

Hi(Y � Z, W )⌦Hj(Y �W,Z)! Hi+j(Y, Z [W )

which is a morphism of mixed Hodge structures and induces a perfect duality
if i + j = 2 dim(Y ). The proof uses a proper modification f : X ! Y such
that X is smooth, f maps X � f�1(Z [W ) isomorphically to Y � (Z [W )
and D = f�1(Z) and E = f�1(W ) are divisors with simple normal crossings
on X. By a gluing process one obtains cohomological mixed Hodge complexes
Hdg•(X log D,E) etc. and a cup product map

Hdg•(X log D,E)
C
⌦Hdg•(X log E,D)

C
! gHdg

•

(X,D [ E)
C

which is compatible with W and F . This answers a question raised by V. Srini-
vas.

We next want to reformulate our results in terms of Borel-Moore homology.

Lemma-Definition 6.25. Borel-Moore homology gets a mixed Hodge struc-
ture through the isomorphisms

HBM

k
(U ; Q) ⇠�! HomQ(Hk

c
(U ; Q); Q)

induced by the adjoint of the Kronecker pairing. It has at most weights in the
interval [�k, 0].

The last assertion follows from Proposition 5.54.

Corollary 6.26. The cap product pairings

H`(U)⇥HBM

k
(U)! HBM

k�`
(U)

are morphisms of mixed Hodge structure. In particular, with [U ] the funda-
mental class of [U ] in Borel-Moore homology (§ B.2.9), the Poincaré homo-
morphism

Hk(U)
\[U ]

���! HBM

2n�k
(U)

is pure of type (�n,�n) and an isomorphism if U is smooth.
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6.3.2 The Extra-Ordinary Cup Product.

Let X be a smooth compact algebraic variety and let D be a divisor with
simple normal crossings on X. The local cohomology groups Hk

D
(X) =

Hk(X,X � D) are given a mixed Hodge structure using the mixed Hodge
complex of sheaves

Hdg•(X) = Cone•(Hdg•(X) u�! Hdg•(X log D))[�1]

but by excision we may as well take

gHdg
•

(X) = Cone•(Hdg•(D) v�! Hdg•(D log D))[�1] .

Observe that the morphisms uC and vC are injective, even after taking
GrF GrW , so we have bi-filtered quasi-isomorphisms

(Hdg•(X)
C
, W, F )! (Coker(uC), W, F )[�1]

and
(Hdg•(X)

C
, W, F )! (Coker(vC), W, F )[�1] .

Moreover, the natural cup-product

Hdg•(X log D)
C
⌦C Hdg•(D)

C
! Hdg•(D log D)

C

maps Hdg•((X)
C
⌦C Hdg•(D)

C
to Hdg•(D)

C
, so induces a cup product map

Coker(uC)⌦C Hdg•(D)
C
! Coker(vC)

which is compatible with the filtrations W and F . Hence we conclude

Theorem 6.27. The extra-ordinary cup product map

Hi

D
(X)⌦Hj(D)! Hi+j

D
(X)

is a morphism of mixed Hodge structures.

Next let us consider the situation of a compact smooth variety Y and a
closed subvariety T in Y . We want to extend the previous theorem to this
situation. We will in fact reduce the general case to the normal crossing case
as follows. First observe that Hi

T
(Y ) has only weights � i. Indeed, we have

the exact sequence

Hi�1(Y )! Hi�1(Y � T )! Hi

T
(Y )! Hi(Y )

and Hi(Y ) is pure of weight i; moreover, the cokernel of Hi�1(Y )! Hi�1(Y �
T ) has weights � i. We choose an embedded resolution of T in Y , i.e. a proper
birational morphism ⇡ : X ! Y such that ⇡�1(T ) = D is a divisor with simple
normal crossings on X. We obtain a diagram
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Hi�1(Y � T ) ! Hi

T
(Y ) ! Hi(Y ) ! Hi(Y � T )

# ' # ⇡⇤ # ⇡⇤ # '
Hi�1(X �D)! Hi

D
(X)! Hi(X)! Hi(X �D)

and by weight considerations the composition

Hi(X)! Hi(X �D) ' Hi(Y � T )! Hi+1

T
(Y )

in rational cohomology is the zero map. Hence we obtain short exact sequences
of mixed Hodge structures

0! Hi

T
(Y )! Hi

D
(X)�Hi(Y )! Hi(X)! 0 .

The injectivity of Hi(Y )! Hi(X) implies that Hi

T
(Y )! Hi

D
(X) is injective

for all i. In a similar way, but using the exact sequences of the pairs (Y, T )
and (X,D) we find that Hj(T ) ! Hj(D) is injective. So the cup product
maps fit in the commutative diagram with injective vertical maps

Hi

T
(Y )⌦Hj(T ) ! Hi+j

T
(Y )

# #
Hi

D
(X)⌦Hj(D)! Hi+j

D
(X)

where the bottom line is a morphism of mixed Hodge structures. Hence the
top line is also a morphism of mixed Hodge structures. ut

As a special case we have:

Corollary 6.28. Let X be a compact smooth complex variety of pure dimen-
sion n and let T be a closed subvariety of X. Then for all k we have a non-
singular pairing of mixed Hodge structures

Hk

T
(X)⌦H2n�k(T )! H2n

T
(X) ⇠= Q(�n) .

Consequently, Hk

T
(X) has at most weights in the range [k, 2k].

The last clause follows since for a compact variety T the weights of
H2n�k(T ) are in the range [0, 2n � k] and since we know already (Corol-
lary 5.47) that Hk

T
(X) has weights in [k � 1, 2k].

Remark 6.29. The condition that X is compact can be weakened to “X
smooth and T a compact subvariety of X”. The duality shows that for X
smooth the mixed Hodge structure on Hi

T
(X) depends only on T and dim X,

not on the analytic or algebraic structure of X.

Applying Corollary 5.47 to the pair (X, U), we deduce:

Proposition 6.30. Let X be a smooth compactification of a smooth complex
algebraic variety U . Then we have

WmHk(U) = 0 for m < k
WkHk(U) = Im

�
Hk(X)! Hk(U)

�
.
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We conclude this section with some results indicating how the dimension
of the singular locus influences weights of the cohomology of the variety itself
but also of the exceptional divisor of a “good ” resolution of singularities.

Theorem 6.31. Let X be an algebraic variety of dimension n. Let Z be an s-
dimensional subvariety of X containing the singular locus ⌃ and let ⇡ : X̃ !
X be a resolution such that ⇡�1(Z) = D is a divisor with normal crossings
on X̃. Then

– for all k � n + s one has Wk�1Hk(D) = 0;
– if moreover Z is compact, then Hk(D) is pure of weight k for all k � n+s.

Proof. We can find (s + 1) a�ne open subsets of X, say U0, . . . , Us whose
union U covers Z. By Theorem C.14 each Uj has the homotopy type of a
CW-complex of dimension  n and so Hk(Uj) = 0 for k > n. Using the
Mayer-Vietoris sequence one sees inductively that Hk(U0 [ · · · [ Ut) = 0 for
k > t + n. Let Ũ = ⇡�1(U). Then the long exact sequence

. . .! Hk(U)! Hk(Ũ)�Hk(Z)! Hk(D)! Hk+1(U)! . . .

shows that the map Hk(Ũ) ! Hk(D) is surjective for k = n + s and an
isomorphism for k > n + s (as Hk(Z) = 0 in this range). Hence for k � n + s
the group Hk(D) has weights � k (as Ũ is smooth). So Wk�1Hk(D) = 0. If
moreover Z is compact, then also D is compact and Hk(D) has weights  k.
Hence Hk(D) is pure of weight k. ut

Corollary 6.32. In the situation of the previous theorem (with Z compact),
Hk

D
(X̃) is pure of weight k if k < n� s.

Proof. This is just the statement dual to the second statement of the previous
theorem. ut

Theorem 6.33. Let X be an algebraic variety with singular locus ⌃ and let
s = dim(⌃). Then for k > dim(X) + s one has Wk�1Hk(X) = 0.

Proof. Choose a resolution ⇡ : (X̃, D) ! (X, ⌃). When k > dim(X) + s we
have the exact sequence

Hk(X̃)! Hk(X)! Hk(D)

because Hk(⌃) = 0. As X̃ is smooth, Wk�1Hk(X̃) = 0 and we have by
Theorem 6.31 that Wk�1Hk(D) = 0. Hence Wk�1Hk(X) = 0. ut

Historical Remarks.
Our treatment of the Leray spectral sequence is entirely based on [Ara], but we

do not stress the motivic point of view.
The systematic study of cup and cap products as well as the various duality

morphisms begun with Fujiki [Fuj]. The results in § 6.3 are slightly more general
and the proof is simpler.



6.3 Cup and Cap Products, and Duality 159

The Hodge structure on the link of a singularity is due to Durfee [Du83] and
[Du-H]. Semi-purity of the link of isolated singularities was proven by Goresky and
MacPherson [G-M82] using the decomposition theorem of Deligne, Beilinson, Bern-
stein and Gabber [B-B-D] which we discuss in a later chapter (theorem 14.42). The
idea of a direct proof along the above lines is due to [G-N-P-P]. In [Nav], the decom-
position theorem for the resolution map of isolated singularities has been proved.



7

Applications to Algebraic Cycles and to

Singularities

Historically, one of the main motivations for the development of Hodge theory was
the study of cycles. This certainly was one of the principal preoccupations of Sir
William Hodge who stated his famous conjecture that algebraic cycles can be de-
tected in cohomology by looking at the integral classes having pure Hodge type. In
this chapter we shall explain this as well as Grothendieck’s generalization. To state
the latter requires certain subtle properties implied by the existence of functorial
mixed Hodge structures on possibly singular and non-compact algebraic varieties
derived in the previous chapters. This can be found in § 7.1. Intermediate Jacobians
find their natural place in this section.

In § 7.2 we discuss the unified approach to cycle classes, due to Deligne and
Beilinson. The Deligne-Beilinson groups are extensions of the integral (p, p) cohomol-
ogy by the intermediate Jacobian and the cycle class map as well as the Abel-Jacobi
map are subsumed in the Deligne cycle class map.

We treat Du Bois theory in § 7.3 and apply it to deduce vanishing theorems of
Kodaira-Akizuki-Nakano type valid for singular spaces. Next, we prove the Grauert-
Riemenschneider Vanishing Theorem for germs of isolated singularities to other co-
homology groups. Finally some applications to Du Bois singularities are given.

7.1 The Hodge Conjectures

7.1.1 Versions for Smooth Projective Varieties

Let X be an n-dimensional smooth projective variety. We want to investigate
rational Hodge substructures of the rational Hodge structure Hm(X; Q) re-
lated to codimension c cycles Z on X for arbitrary m, not just for m = 2c.
Recall (Prop. 5.46) that the exact sequence of relative cohomology for the pair
(X,U = X � Z)

· · ·! Hm

Z
(X)! Hm(X)! Hm(U)! · · · (VII–1)

is a sequence of mixed Hodge structures. So the image of the first map is a
Hodge substructure of Hm(X), the group of classes supported on Z. Since
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torsion classes may be non-algebraic (see Remark 1.15), we pass to rational
cohomology, and we say that, more generally, a rational Hodge substructure
H ⇢ Hm(X; Q) is supported on Z ⇢ X if

H ⇢ Im{Hm

Z
(X; Q)! Hm(X; Q)}.

Taking all subvarieties of codimension c, the preceding observation implies
that the coniveau filtration

N cHm(X; Q) :=
[

codim Z�c

Im{(Hm

Z
(X; Q)! Hm(X; Q))}

is a filtration by Hodge substructures. As an example of how this gives
restrictions on the possible Hodge numbers, if Z is smooth of codimen-
sion c by Poincaré-Lefschetz duality Hm

Z
(X) ⇠= Hm�2c(Z)(c) so that its

image H in Hm(X; Q) has non-zero Hodge numbers only in the range
(c, m� c), . . . , (m� c, c); this can be formalized as follows:
Definition 7.1. The level of a non-zero Hodge structure V =

L
V p,q is the

largest di↵erence |p�q| for which V p,q 6= 0. On other words, a Hodge structure
V of weight n has level at most n� 2p if and only if F pV = V . For instance
level 0 is only possible for even weight Hodge structures and means that it is
pure of type (p, p), level 1 means that H = Hp�1,p �Hp,p�1 etc.
The preceding discussion amounts to saying that for smooth Z of codimension
c the image of Hm

Z
(X; Q) in Hm(X; Q) has level at most m � 2c. We want

to explain how mixed Hodge theory can be used to show that this remains
the case for singular Z. To do this we compare of the image in cohomology of
Z ,! X with the image in cohomology under the composition Z̃ ! Z ,! X,
where Z̃ ! Z is a resolution of singularities. The crucial observation here is
the following result.

Lemma 7.2. Assume that there are morphisms of complex algebraic varieties

Z̃
��! Z

i�! X

with Z compact, Z̃ compact and smooth, X smooth and � surjective. Then

Ker (i⇤ : H⇤(X)! H⇤(Z)) = Ker
�
i��)⇤ : H⇤(X)! H⇤(Z̃)

�
.

Proof. All these cohomology groups have mixed Hodge structures and it suf-
fices to prove the equality on the graded pieces. Recall (Theorem 5.33) that
the Hodge numbers hp,q = dim Hm(T )p,q vanish for p+q > m if T is compact
and for p + q < m if T is smooth. Apply this first to the compact varieties Z
and Z̃: the maps GrW

k
(i⇤) and GrW

k
(�⇤�i⇤) on m-cohomology are both zero

for k > m and so the two kernels live in weight  m, hence in weight m, since
X is smooth. It su�ces therefore to look at the m-th graded piece. Here the
kernels are the same since the map

GrW

m
Hm(Z; Q) �

⇤
��! GrW

m
Hm(Z̃; Q) = Hm(Z̃; Q)

induced by � is injective (see Theorem 5.41). ut
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We apply this to the situation of an embedding i : Z ,! X of a subvariety
in a smooth projective variety and � : Z̃ ! Z a resolution of singularities. By
Proposition 1.19 the Gysin map associated to f : Z̃ ! X

f! : Hk�2c(Z̃)(�c)! Hm(X), c = codimZ

is a morphism of pure Hodge structures. In this situation we have:

Corollary 7.3. In rational cohomology the subspace of Hm(X) consisting of
classes supported on Z coincides with the image of the Gysin map:

Im
�
Hm

Z
(X; Q)! Hm(X; Q)

�
= Im

�
Hm�2c(Z̃; Q)

(f̃)!���! Hm(X; Q)
�
. (VII–2)

Proof. The exact sequence (VII–1) together with lemma 7.2 yields a short
exact sequence

Hm(X,Z; Q)�! Hm(X; Q)
f̃
⇤

��! Hm(Z̃; Q).

Applying the Poincaré-duality isomorphism and renumbering the indices we
get

Hm(U ; Q)! Hm(X; Q)
f̃
!

��! Hm�2c(Z̃; Q).

Dualizing and applying the Kronecker-homomorphism (which is an isomor-
phism since we are working with rational coe�cients) we find

Im(f!) = Ker
�
Hm(X; Q)! Hm(U ; Q)

�

= Im
�
Hm

Z
(X; Q)! Hm(X; Q)

�

as claimed. ut

As in the case of smooth Z, this implies that the Hodge structure on
Im{Hm

Z
(X; Q) ! Hm(X; Q)} has the same Hodge numbers as one on the

(m� 2c)-cohomology group of a smooth compact variety and hence the level
of the preceding Hodge structure is at most m� 2c:

Corollary 7.4. Let X be a smooth projective variety. Any rational Hodge
substructure of weight m contained in N cHm(X) has level at most m� 2c .

Now, one might conjecture that conversely F cHm(X) \ Hm(X; Q) is sup-
ported on a subvariety of codimension at least c, but this does not make
sense, since F cHm(X) \Hm(X; Q) itself is not a Hodge structure, as noted
by Grothendieck in [Groth69]: it can have odd dimension (see [Lewis, 7.15]
for details). Correcting this leads to the generalized Hodge conjecture, as im-
proved by Grothendieck:
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Conjecture 7.5 (Generalized Hodge Conjecture GHC(X, m, c)). Let
X be a smooth projective variety. The largest rational Hodge substructure of
F cHm(X; C)\Hm(X; Q) is the union of all the rational Hodge substructures
supported on codimension � c subvarieties of X.

Alternatively, for every Q-Hodge substructure H 0 of Hm(X; Q) of level at
most m � 2c, there exists a subvariety Z of X of codimension � c such that
the substructure H 0 is supported on Z.

Remark 7.6. The (classical) Hodge Conjecture 1.15 is the special case m = 2c,
with H 0 = H2c(X; Q) \ Hc,c.

7.1.2 The Hodge Conjecture and the Intermediate Jacobian

We have seen (Example 3.30) that to any Hodge structure H of odd weight
2m� 1 there is associated a complex torus

J(H) = HZ\HC/Fm = HZ\Fm,

the intermediate Jacobian of the associated Hodge structure. A special case
arises for the cohomology groups of odd dimension of a smooth complex pro-
jective variety X of dimension n; we get intermediate Jacobians

Jm(X) = J(H2m�1(X)), m = 1, . . . , n.

The first one, J1(X) is the usual Jacobian torus and Jn(X) is the Albanese
torus Alb(X). To define the Abel-Jacobi map, a dual description for the
intermediate Jacobian is useful. Cup product pairing establishes a duality
(modulo torsion) between H2m�1(X) and H2n�2m+1(X)(�n). Combined with
Poincaré duality this yields the integration homomorphism

↵ : H2n�2m+1(X)! H2n�2m+1

DR
(X)_

sending a cycle to integration over the cycle and so

Jm(X) ⇠= Fn�m+1H2n�2m+1(X)_/↵
�
H2n�2m+1(X)

�
.

Using this description we can define the Abel-Jacobi map on algebraic cy-
cles of (complex) codimension m which are homologous to zero. If Z = @c is
such a cycle, integration over c defines an element of H2n�2m+1(X, C)_ and
a di↵erent choice c0 with Z = @c0 determines the same element in the inter-
mediate Jacobian Jm(X) since c � c0 gives a period integral. This gives the
Abel-Jacobi map, a linear map

um

X
: Zm

hom
(X) :=

⇢
codim m-cycles on X
homologous to zero

�
�! Jm(X). (VII–3)

The polarization on the Hodge structure of H2m�1(X) induces a non-degenerate
bilinear form on the tangent space at 0 of the intermediate Jacobian which
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in general is indefinite, except when m = 1 (the ordinary Jacobian torus for
divisors) or m = dim X � 1 (the Albanese variety). In general, the subtorus
associated to N1H2m�1(X) receives a definite polarization and hence is alge-
braic. We call it the algebraic intermediate Jacobian

Jm

alg
(X) = J(N1H2m�1(X)).

Likewise, we can consider the subtorus associated to the largest Hodge sub-
structure of Fm�1H2m�1(X):

H2m�1

Hdg
(X) := {maximal rational Hodge substructure

of level 1 contained in H2m�1(X), }

the largest substructure on which the polarization restricts positively. So this
torus, the Hodge-theoretic intermediate Jacobian

Jm

Hdg
(X) :=J

�
H2m�1

Hdg
(X)

�

is also an abelian variety and contains Jm

alg
(X). The generalized Hodge con-

jecture amounts to saying that the two coincide.
We can now prove that the generalized Hodge conjecture is in fact equiv-

alent to the classical Hodge conjecture. We start with the following simple

Observation 7.7. 1) Conjecture GHC(X, 2p, p � 1) implies the classical
Hodge conjecture for p-cycles on X.
2) If for every smooth curve C the Hodge classes in H1(C; Q)⌦H2p�1(X; Q)⇢
H2p(C⇥X; Q) come from algebraic cycles on C⇥X, conjecture GHC(X, 2p�
1, p� 1) holds.

Proof. 1) Start with a rational Hodge class of type (p, p). The line V it spans is
a rational Hodge structure of level 0 and hence of level  2. By GHC(2p, p�1)
there exists a codimension (p�1)-cycle Z ⇢ X on which this Hodge structure,
is supported. Let � : Z̃ ! Z be a resolution of singularities. Then V is in the
image of the Gysin-map H2(Z̃; Q) ! H2p(X; Q). Because H2(Z̃) carries a
polarized Hodge structure, by semi-simplicity 2.12 the kernel of the Gysin-map
is an orthogonal summand and its complement maps isomorphically onto the
image of the Gysin map. In particular, V corresponds to a Hodge substructure
Ṽ of H2(Z̃) of pure type (1, 1). Since the Hodge conjecture holds in this case,
there is a divisor Ỹ ⇢ Z̃ whose class spans Ṽ and hence its image Y in X
spans V .
2) By the Lefschetz hyperplane theorem for a smooth complete intersection
curve C ⇢ Jp

Hdg
(X) the inclusion map induces a surjection on the level of

H1 and the Gysin map provides us with an injection H2p�1

Hdg
(X) ,! H1(C)

of pure Hodge structures, which, again by semi-simplicity gives a surjection
H1(C) ⇣ H2p�1

Hdg
(X) of Hodge structures and hence a Hodge class in the

product H1(C)⌦H2p�1

Hdg
(X). By assumption this class is supported on a cycle

� ⇢ C ⇥ X and its image under projection C ⇥ X ! X supports all of
H2p�1

Hdg
(X) by construction. ut
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Remark 7.8. In fact, looking a bit more closely to the proof of 1), one can
show that the converse of 2) holds.

Corollary 7.9. If the classical Hodge conjecture is true for all smooth projec-
tive varieties, then the generalized Hodge conjecture is true.

Proof. Note that GHC(X, m, c) for all m and c follows if GHC(X,m, c) is
true in the two cases m = 2p � 1, c = p and m = 2p, c = p. The last is
the classical Hodge conjecture. By Observation 7.7, the first follows from the
classical Hodge conjecture on the products C ⇥X, C a curve. ut

7.1.3 A Version for Singular Varieties

The naive generalization of the Hodge conjecture to singular varieties turns
out to be false. Indeed, there is a counterexample due to Bloch ([Jann, Ap-
pendix A]). There is a much more subtle generalization using 1-motives which
is due to Barbieri-Viale [BaV02, BaV07]. Bloch’s example as well as a later
counterexample by Srinivas (cited in [BaV02]) still make sense in this formu-
lation.

There is also a version for Borel-Moore homology which is much easier to
formulate. To do this, we first reformulate the Hodge conjecture (for smooth
projective varieties) for homology. If Z ⇢ X is a subvariety of dimension d,
we look at the image Im(Hm(Z; Q) ! Hm(X; Q)), a rational Hodge sub-
structure of weight �m. This Hodge structure has level  m � 2d, since the
preceding image is the same as the image of Hm(Z̃; Q) in Hm(X; Q) under
the composition Z̃ ! Z ,! X. This leads to the filtration by “niveau”:

NdHm(X; Q) :=
[

dim Zd

Im(Hm(Z; Q)! Hm(X; Q)),

where Z runs over all subvarieties of dimension d. The subspace NdHm(X; Q)
is a rational Hodge substructure of Hm(X; Q) of weight �m and level  m�2d
and hence contained in F�dHm(X; C) \Hm(X; Q).

Conjecture 7.10 (Generalized Hodge Conjecture (homological ver-
sion)). Let X be a smooth complex projective variety. The rational Hodge
substructure NdHm(X; Q) of Hm(X; Q) coming from the cycles of dimen-
sion d is the largest rational Hodge substructure of Hm(X; Q) contained in
F�dHm(X; C) \ Hm(X; Q).

For arbitrary algebraic varieties (not necessarily smooth or compact) we
can pass to Borel-Moore homology. Roughly speaking, we have to replace
HBM

m
by its weight �m part. According to Definition-Lemma 6.25 this is the

lowest possible weight and so carries a pure Hodge structure of weight �m
so that modulo these changes the above homological version of the Hodge
conjecture formally makes sense. What remains to be shown is that the part
coming from the cycles has the correct level inside the lowest weight part.
This is the content of the following Lemma.
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Lemma 7.11. Let U be a complex algebraic variety. The niveau d subspace
NdHBM

m
(U ; Q) ⇢ HBM

m
(U ; Q) intersects the lowest weight part of HBM

m
(U ; Q)

in a Hodge structure of level  2m� d.

Proof. We consider a compactification X of U and we set D = X � U . Fix
a d-dimensional subvariety Z of U and let Y be its closure in X. First of all,
strictness implies that

Im(W�mHBM

m
(Y ; Q)!W�mHBM

m
(X; Q)) =

Im(HBM

m
(Y ; Q)! HBM

m
(X; Q)) \W�mHBM

m
(X; Q).

Next, there is a commutative diagram of mixed Hodge structures

HBM

m�1
(D \ Y )! HBM

m�1
(D)x??

x??
HBM

m
(Z; Q) ! HBM

m
(U ; Q)x??
x??

HBM

m
(Y ; Q) ! HBM

m
(X; Q),

with all maps induced by suitable restrictions. Since in weight (�m) the
topmost line is identically zero, this shows that the niveau d subspace of
HBM

m
(U ; Q) in weight (�m) is the restriction of NdW�mHBM

m
(X; Q).

Finally, we have to compare this with similar spaces in the homology of
suitable resolutions. We choose a resolution of singularities � : X̃ ! X such
that the proper transform Ỹ of Y is smooth as well and we get a commutative
diagram of mixed Hodge structures

HBM

m
(Z; Q)! HBM

m
(X; Q)x??
x??

HBM

m
(Z̃; Q)! HBM

m
(X̃; Q).

The image of the vertical arrows not only lands in the weight (�m) part,
but spans it. In fact this statement is dual to the assertion of Theorem 5.41.
It follows that the niveau d subspace intersect the lowest weight subspace of
HBM

m
(U ; Q) exactly in the image of the niveau d subspace of HBM

m
(X̃; Q).

The lower arrow in itself is a morphism of pure Hodge structures of
weight (�m) and HBM

m
(Z̃; C) = F�dHBM

m
(Z̃; C), since Z has dimension

d. So the niveau d subspace of W�mHBM

m
(X; Q), which is the image in-

side HBM

m
(X; Q) of the niveau d subspace of HBM

m
(X̃; Q), in fact belongs

to W�m \ F�dHBM

m
(X; C) \HBM

m
(X; Q). ut

Motivated by this we abbreviate

H̃m(U) :=W�mHBM

m
(U ; Q)

and call it the pure part of the homology. The generalized Hodge conjec-
ture then reads:
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Conjecture 7.12 (Generalized Hodge conjecture (homological ver-
sion II)). Let U be an algebraic variety. The rational Hodge substructure
NdH̃m(U) inside the pure part of the homology H̃m(U) coming from the cycles
of dimension d is the largest rational Hodge substructure of H̃m(U) contained
in F�dH̃m(U ; C) \HBM

m
(U ; Q).

As pointed out by Jannsen in [Jann], this conjecture follows as soon as the
generalized Hodge conjecture for smooth projective varieties can be shown.
The argument runs as follows.

The crucial ingredient is the semi-simplicity property for polarized pure
Hodge structures (2.12). It implies that the kernel of the surjective morphism
H̃m(X̃) ⇣ H̃m(U) is a direct factor and hence the largest rational Hodge
substructure contained in F�d of the source maps surjectively onto the largest
rational Hodge substructure of F�d of the target. So, if the Hodge conjecture
holds for the source, a smooth projective variety, the former coincides with
NdH̃m(X̃) and so the latter must coincide with NdH̃m(U), completing the
proof.

7.2 Deligne Cohomology

In this section X will be a smooth complex projective variety, although we
occasionally allow smooth varieties which are not complete.

7.2.1 Basic Properties

In comparing the various fundamental classes it is natural to consider the fibre
product of integral cohomology and F dH2d(X; C) over complex cohomology.
Deligne cohomology sets the stage for the comparison of fundamental classes
on the level of complexes; a fibre product is just a kernel of a morphism and as
explained in the Appendix (Example A.14) a kernel of a surjective morphism
between complexes is quasi-isomorphic to the cone over this morphism (shifted
to the right by 1). This leads to the following construction.

Lemma-Definition 7.13. 1) Let R be any subring of R and consider R(d)⇢
C as a complex in degree 0 mapped into the De Rham complex by the inclu-
sion ✏d : R(d) ,! ⌦•

X
. Denote the other natural inclusion by ◆d : F d⌦•

X
,!

⌦•

X
. The shifted cone over the di↵erence of the two is the Deligne complex

R(d)Del := Cone•(✏d � ◆d : R(d)� F d⌦•

X
! ⌦•

X
)[�1].

Equivalently, with �d the composition of the inclusion of R(d) in the De
Rham complex followed by projection onto the quotient complex obtained by
dividing out the subcomplex F d, we have

R(d)Del := Cone•
�
�d : R(d)! ⌦•

X
/F d⌦•

X

�
[�1].



7.2 Deligne Cohomology 169

This complex is quasi-isomorphic to the complex

0! R(d)! OX ! ⌦1

X
! · · ·! ⌦d�1

X
! 0. (VII–4)

2) Its hypercohomology gives the Deligne cohomology groups

Hk

Del
(X, R(d)) :=Hk(X,R(d)Del).

Similarly, if Y ⇢ X is closed, hypercohomology with support defines Deligne
cohomology with support in Y , denoted

Hk

Y
(X, R(d)Del).

Examples 7.14. 1) For d = 0 we have the usual cohomology group Hm(X;R).
2) For d = 1 and A = Z, the 2-term Deligne complex is quasi-isomorphic to
the sheaf O⇤

X
(placed in degree 1), i.e. we have

Z(1)Del

qis

⇠��! O⇤
X

[�1]

and hence Hm

Del
(X, Z(1)) = Hm�1(X,O⇤

X
). For m = 2 we get the Picard

group and we see thus that in general the Deligne groups are only groups
and not vector spaces.
3) We have

Z(2)Del

qis

⇠��! {O⇤
X

d log

���! ⌦1

X
}[�1].

And H2

Del
(X,R(2)) = H1(O⇤

X

d log

���! ⌦1

X
), which for R = Z can be shown to

be isomorphic to the group of isomorphism classes of line bundles equipped
with a connection on X. See [Beil85].

The exact sequence of the cone (A–12) together with the second interpretation
of the Deligne groups yields an exact sequence

Hk�1(X, Z(d))!Hk�1(X; C)/F dHk�1(X; C)!Hk

Del
(X, Z(d))!Hk(X, Z(d)).

It can be rewritten as the short exact sequence

0! Hk�1(X; C)⇥
Hk�1(X, Z(d))� F dHk�1(X)

⇤ ! Hk

Del
(X, Z(d))! Hk(X, Z(d))! 0.

We next use the interpretation of the Ext-groups for mixed Hodge structures
from Example 3.34 (3) and obtain

0! ExtMHS(Z, Hk�1(X, Z(d))! Hk

Del
(X, Z(d))!

HomMHS(Z, Hk(X, Z(d))! 0, 8k  2d.

�
(VII–5)

Comparing this with equation (III–17) in Chapter 3, we find the relation with
a construction starting from the constant sheaf Z

X
(d):
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Theorem 7.15. Suppose that k  2d. Then we have

Hk

Del
(X, Z(d)) = Hk

Hodge
(�(Z

X
(d))) = Extk

MHS
(Z, R� (Z

X
(d))).

The Deligne complex behaves functorially with respect to algebraic mor-
phisms and hence so do the Deligne groups.

There is a product structure on Deligne cohomology which comes from the
multiplication on the level of complexes (VII–4)

[ : Z(p)Del ⌦ Z(q)Del ! Z(p + q)Del

defined by

x [ y =

8
<

:

x · y if deg x = 0
x ^ dy if deg x > 0 and deg y = q
0 otherwise.

For p = 0 this gives back the usual cup-product in cohomology. For the proof
of the following result we refer to [Es-V88, §1,§3],

Proposition 7.16. The product on Deligne cohomology induces an anticom-
mutative graded product structure on Deligne cohomology:

[ : Hk

Del
(X,R(p))⌦H`

Del
(X, R(q))! Hk+`

Del
(X,R(p + q)).

The actions of the Deligne complex defined by the projection map combined
with the usual products

R(p)Del ⌦R(q) �! R(p + q)
R(p)Del ⌦ F q(⌦•) �! F p+q(⌦•)

R(p)Del ⌦⌦•

X
�! ⌦•

X

induce a bi-graded action of the Deligne cohomology on the vector spacesL
q
Hq

DR
(X),

L
p,q

Hq(X,R(p)) and
L

p,q
F pHq(X) in such a way that the

long exact sequence of the cone (see (A–12))

· · ·! Hk�1(X,R(d))� F dHk�1(X)! Hk�1(X; C)!
Hk

Del
(X, R(d))! Hk(X, R(d))� F dHk(X)! · · ·

is compatible with these actions.

Example 7.17. Using Example 7.14 we have a pairing

H1

Del
(X, Z(1))⇥H1

Del
(X, Z(1))! H2

Del
(X, Z(2))

k k
H1(O⇤

X
)⇥H1(O⇤

X
) ! {Line bundles with a connection}

In [Beil85, §1-2], it is shown that this pairing (f, g) 7! (L,r) has the property
that the curvature of r is given by d log(f)^d log(g) and that the monodromy
around a loop � based x 2 X can be expressed as
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exp
✓

1
2⇡i

Z

�

log(f)d log(g)� log g(x)
Z

�

d log(f)
◆

.

When X is an open Riemann surface and � a loop around a puncture y this
number is the Tate symbol (f, g)y and hence in this case one has a natural
mapping

K2(X)! H2

Del
(X, Z(2))

which maps the symbol {f, g} :=
P

y
(f, g)y to the product f [ g.

There is also a version of products in Deligne cohomology with supports.
The product of two classes with support in two closed subvarieties Y1 and
Y2 yields a class with support in the intersection Y1 \ Y2, provided the two
subvarieties meet properly. With the appropriate modifications, the preceding
assertions then remain true.

Remark 7.18. Although the definition of the Deligne complex makes sense for
non-compact complex algebraic manifolds, it is itself non-algebraic in nature,
roughly because di↵erential forms admitting arbitrary singularities at infinity
are allowed. To remedy this, Beilinson has proposed to use forms with at
most poles at infinity. So, as before, we let U be a smooth complex algebraic
manifold and a smooth compactification j : U ,! X by means of a divisor D
having simple normal crossings. Then we modify the definition of the Deligne
complex by replacing R(d) by the complex of sheaves Rj⇤R(d) on X, F d⌦•

U

by the complex F d⌦•

X
(log D) and ⌦•

X
by Rj⇤⌦•

X
. This yields the Deligne-

Beilinson complex

R(d)DB := Cone•
�
✏d � ◆d : Rj⇤R(d)� F d⌦•

X
(log D)! Rj⇤⌦

•

X

�
[�1].

We shall only summarize its properties and refer to [Es-V88] for proofs. First
of all, this complex restricted to U is quasi-isomorphic to the ordinary Deligne
complex on U . Next, its hypercohomology groups

Hp

DB
(U, R(d)) := H

p(X, R(d)DB),

the Deligne-Beilinson groups do not depend on the choice of the compact-
ification. It follows that the inclusion j : U ,! X induces natural forgetful
maps

Hp

DB
(U, R(d))! Hp

Del
(U, R(d)).

Secondly, as mentioned before, the complexes themselves behave well under
morphisms f : U ! V between smooth complex algebraic manifolds. In fact,
if X, respectively Y is a smooth compactification of U , respectively V by
means of simple normal crossing divisors such that f extends to a morphism
f̄ : X ! Y , there is an induced morphism

f̄⇤ : (R(d)DB)
Y
! f̄⇤ (R(d)DB)

X

which induces a homomorphism on the Deligne-Beilinson groups.
We also mention that a cup product on Deligne-Beilinson cohomology

can be introduced (compatible with the forgetful maps above) for which the
analogue of Proposition 7.16 is still true.
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7.2.2 Cycle Classes for Deligne Cohomology

We recall § 2.4 that for any irreducible subvariety Y of codimension d in a
compact algebraic manifold X, we have defined an integral fundamental class
cl(Y ) 2 H2d(X, Z(d)) which under the inclusion

✏d : Z(d) ,! C

maps to the image of the Hodge class clHdg(Y ) 2 F dH2d(X; C) in H2d(X; C).
This image has pure type (p, p).

In local cohomology on the one hand we have the Thom class ⌧(Y ) 2
H2d

Y
(X, Z(d)) which maps to cl(Y ) when we forget the support. On the other

hand we have the Thom-Hodge class ⌧Hdg(Y ) 2 H
2d

Y
(X,F d⌦•

X
) mapping to

clHdg(Y ) upon forgetting the support.
Looking at place k = 2d in the preceding long exact sequence for a cone,

written for cohomology with supports in a closed subvariety Y ⇢ X leads to
the definition of the cycle class in Deligne cohomology as we shall now explain.

Proposition 7.19. Let Y ⇢ X be a codimension d subvariety. There is a
unique Thom-Deligne class

⌧Del(Y ) 2 H2d

Y
(X, ZDel(d))

which maps to the Thom class ⌧(Y ) 2 H2d

Y
(X, Z(d)) and the Thom-Hodge

class ⌧Hdg(Y ) 2 H2d

Y
(X,F d⌦•

X
). Forgetting supports, we have the Deligne

class, the fundamental class clDel(Y ) 2 H2d

Del
(X, Z(d)) in Deligne cohomology.

Under the maps induced by the two projections Z(d)Del ! Z(d), respectively
Z(d)Del ! F d⌦•

X
it maps to the usual fundamental class, respectively the

Hodge fundamental class.

Proof. Consider the exact sequence

! H2d�1

Y
(X; C)! H2d

Y
(X, ZDel(d))

! Hd

Y
(X, Z(d))�H2d

Y
(X,F d⌦•

X
)! H2d

Y
(X; C).

The group H2d�1

Y
(X; C) vanishes, being dual to H2 dim Y +1(Y ; C). So Deligne

cohomology can be expressed as a fibre product

H2d

Y
(X, ZDel(d)) = H2d

Y
(X, Z(d))⇥

H
2d
Y (X;C)

H2d

Y
(X,F d⌦•

X
).

Since the two Thom classes have the same image in H2d

Y
(X; C) there is a

unique Deligne-Thom class with the stated properties. ut

We want to relate the Deligne-Thom class to the Abel-Jacobi map. As a
first step, we prove:

Lemma 7.20. The Deligne cohomology group H2d

Del
(X, Z(d)) fits in an exact

sequence of abelian groups

0! Jd(X)! H2d

Del
(X, Z(d))! Hd,d(X, Z(d))! 0

relating the intermediate Jacobian and the Hodge groups.
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Proof. Recall the definition of the Deligne cohomology as the twisted cone
over the di↵erence of the two inclusions Z(d) ,! C and F p⌦•

X
,! ⌦•. The

coboundary map in the exact sequence of the cone is just the map induced by
(minus) this di↵erence (Examples A.14) and so in particular we find that the
kernel of

H2d(X, Z(d))� F dH2d(X; C)! H2d(X; C)
is exactly the Hodge group

Hd,d(X, Z(d)) :=H2d(X, Z(d)) \ (✏d)�1Hd,d(X).

The exact sequence of the cone then gives a short exact sequence

0! H2d�1(X; C)/{F dH2d�1(X) + H2d�1(X, Z(d))}! H2d

Del
(X, Z(d))!

! Hd,d(X, Z(d))! 0

and since ✏d is multiplication by (2⇡i)d, the first term is the d-th intermediate
Jacobian. ut

As the next step, we explain how to describe the Abel-Jacobi map in an
algebraic fashion. Let Z be an algebraic cycle homologous to zero with support
|Z|. Consider the exact cohomology sequence for cohomology with support in
|Z|. It is an exact sequence of mixed Hodge structures as we have seen before
(§ 5.5). A portion of its reads

· · ·! H2m�1

|Z|
(X)! H2m�1(X)! H2m�1(X � |Z|)! H2m

|Z|
(X)! . . . .

The first group in this sequence is zero, while the last group is pure of type
(m, m) (it is the free Z-module generated by the components of Z) and
contains the Thom-class ⌧(Z) of Z. Since it maps to zero under the last
map of the preceding sequence, we thus find an extension of H2m�1(X) by
Z⌧(Z) = Z(�m). By Example 3.34 1, this thus defines an element in the in-
termediate Jacobian Jm(X). A calculation shows that this is the Abel-Jacobi
image of Z. For more details the reader may consult [Es-V88, § 7] where the
following more general result is proven.
Theorem 7.21. The Abel-Jacobi map (VII–3) uX : Zd

hom
(X) ! Jd(X) fits

in the following commutative diagram

0 ! Zd

hom
(X) ! Zd(X) ! Zd(X)/Zd

hom
! 0??yuX

??yclDel

??ycl

0 ! Jd(X) �! H2d

Del
(X, Z(d)) �! Hd,d(X, Z(d))! 0.

7.3 The Filtered De Rham Complex And Applications

7.3.1 The Filtered De Rham Complex

Let X be a complex algebraic variety and X• a cubical hyper-resolution. Let
✏ : X• ! X be the associated augmented simplicial variety. The isomor-
phism class of the mixed Hodge complex ✏⇤K•

DR
(X•) in the derived bi-filtered
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category of complexes of OX -modules heavily depends on the choice of the
hyperresolution. For instance, the graded objects with respect to the weight
filtration give the cohomology of all of the smooth constituents of the hyperres-
olution. If X is compact and if we forget the weight filtration we obtain the De
Rham complex R✏⇤⌦•

X• . By definition its hypercohomology computes the co-
homology of X together with its Hodge filtration. This is no longer true when
X ceases to be compact, although we still have H

q(X,R✏⇤⌦•

X•) = Hq(X; C).
Surprisingly, on the level of sheaves of di↵erential forms a certain uniqueness
result still holds as shown by Du Bois and which we quote without proof from
[DuB]:

Theorem 7.22. Let X be a complex algebraic variety and let ✏ : X• ! X,
✏0 : X 0

•
! X be two cubical hyperresolutions related by a morphism of cubical

varieties f : X 0
•
! X• in the sense that

X 0
•

f

������! X•

X

@

@
@R

�

�
� 

✏
0

✏

is commutative. Then the canonical map

R✏⇤⌦
p

X•
! R✏0

⇤
⌦p

X0
•

which obtained by applying R✏⇤ to ⌦p

X•

f
⇤

��! f⇤⌦
p

X0
•
! Rf⇤⌦

p

X0
•

is a quasi-
isomorphism.

It follows that the complex R✏⇤⌦•

X•
equipped with the trivial filtration con-

sidered in the derived filtered category of complexes of coherent OX -modules
is uniquely determined by X. This object is called the filtered De Rham
complex and denoted (⌦̃•

X
, F ). By abuse of notation, we shall write

⌦̃p

X
:= Grp

F
⌦̃•

X
[p].

Explicitly, fixing some cubical hyperresolution X•, the de Rham complex is
given by

⌦̃k

X
:=

M

p+q=k

(✏q)⇤⌦p

Xq

with di↵erential the sum d + d00 of the ordinary di↵erentiation d coming from
the individual complexes ⌦•

Xq
and d00 coming from the Čech di↵erential

q+1X

i=0

(�1)id⇤
i,q+1

: (✏q)⇤⌦p

Xq
! (✏q+1)⇤⌦p

Xq+1
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We shall have occasion to compare this filtered De Rham complex with the
De Rham complex constructed from the sheaf ⌦1

X
of Kähler di↵erentials

on X. These sheaves are defined locally as follows. Suppose that i : U ,! V is
a local chart exhibiting U as the locus of zeroes of finitely many functions fj ,
j = 1, . . . , k defined on a smooth manifold V . Let IV be the ideal they define
and dIV the OU -module generated by their di↵erentials. Then on U we define
the sheaf of Kähler di↵erentials as as

⌦1

U
:=⌦1

V
/(IV ⌦1

V
+ dIV ).

Clearly, this is a coherent OU -module. That this is independent of the chosen
embedding needs some verification. Indeed, we have

⌦1

U
= I�/I2

�
, � ⇢ U ⇥ U the diagonal.

See [Hart77] for the algebraic situation and [Gr-R77] for analytic varieties. By
definition ⌦p

U
is the p-exterior wedge (over OU ) of ⌦1

U
, and by construction the

resulting sheaves ⌦p

X
are OX -coherent. The usual d-operator induces natural

derivations d : ⌦p

X
! ⌦p+1

X
yielding the Kähler De Rham complex

OX

d�! ⌦1

X

d�! · · · d�! ⌦n

X
. (VII–6)

The augmentation ✏ : X• ! X induces a homomorphisms of complexes

'• : ⌦• ! ⌦̃•.

If we give both the trivial filtration, this morphism is unique in the filtered
derived category of complexes of coherent OX -sheaves.

Examples 7.23. 1) Let Y be a smooth variety and E a divisor of Y with
simple normal crossings. We let IE be the ideal sheaf of E inside Y . The
sheaf ⌦1

E
of Kähler di↵erentials now fits in an exact sequence

0! IE/I2

E

d�! ⌦1

Y
⌦OE ! ⌦1

E
! 0,

so it is a locally free OY -module. The components of E are smooth and as in
example 5.3 1), the unions Eq of the q-fold intersections define a simplicial
resolution a• : E• ! E of E. There is a natural map

⌦q

E
! (a0)⇤⌦q

E1

whose kernel consists of those germs of q-forms on E that are supported
on the singular locus Esing of E (since a0 is an isomorphism away from
the singular locus and the right hand side is torsion free). These germs
constitute the torsion q-forms Torsq

E
on E. Using the identification

⌦q

E
= ⌦q

Y
/(IE⌦q

Y
+ dIE ^⌦q�1

Y
)
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one easily verifies that the torsion equals

Torsq

E
= IE⌦q

Y
(log E)/(IE⌦q

Y
+ dIE ^⌦q�1

Y
). (VII–7)

On the level of a⇤⌦• we have the Čech di↵erentials d00
i
. We thus get a

sequence

0! Torsq ! ⌦q

E
! (a0)⇤⌦q

E1

d
00
0��! (a1)⇤⌦q

E2

d
00
1��! · · ·

This sequence is exact as we show by a local computation. Indeed, if Y = C
n

and E is given by z1 · · · zk = 0, the preceding sequence splits into a direct
sum of

�
n

p

�
sequences, one for each monomial form dzI , I ⇢ {1, . . . , n}. Each

of these is then a Koszul-type exact sequence of the form

0!
Y

j2J

zjA! A!
M

j2J

A/(zj)!
M

j,k2J

A/(zj , zk) · · ·

where J = {1, . . . , k} � I and A = OCn . This shows that up to quasi-
isomorphism we have

⌦̃•

E
= ⌦•

E
/ Tors = ⌦•

Y
/IE⌦•

Y
(log E),

(all equipped with the trivial filtration).

2) Let f : Y ! X be a morphism of complex algebraic varieties which is
a homeomorphism. Since the property of being of cohomological descent
is a topological one, any cubical hyperresolution for Y induces one for X
by composing with f . Hence ⌦̃•

X
= f⇤⌦̃•

Y
. In the category of birational

morphisms with target X which are homeomorphisms, there is a maximal
object, the weak normalization n0 : Xwn ! X of X. To compute the
filtered De Rham complex, it is therefore su�cient to compute it for its
weak normalization. For instance, we always have

H0(⌦̃•

X
) ⇠�! n0

⇤
OXwn .

Let us next look at a curve X. Uni-branch singularities get resolved by the
weak normalization procedure and the full normalization n : X̃ ! X pulls
apart the di↵erent branches. If ⌃ = Xsing the obvious exact sequence

0! n0
⇤
OXwn ! n⇤OX̃

! C
⌃
! 0

together with the defining sequence

0! n⇤OX̃

d�! C
⌃
� n⇤⌦

1

X̃
! 0

combine to show that the filtered De Rham complex of the curve X is given
by

0! n0
⇤
OXwn

d�! n⇤⌦
1

X̃
! 0

together with its trivial filtration.
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Next, we state some important properties of the De Rham complex.

Proposition 7.24. Let X be a complex algebraic variety. Then
1) ⌦̃•

X
is a resolution of the constant sheaf C

X
;

2) the di↵erentials of the graded complex GrF ⌦̃•

X
are OX-linear and the

cohomology sheaves of these complexes are OX-coherent;
3) if X is compact, the spectral sequence of hypercohomology

Ep,q

1
= H

p+q(X,Grp

F
⌦̃•

C
) �! Hp+q(X; C)

degenerates at E1 and Epq

1
= Grp

F
Hp+q(X; C).

These properties follow more or less immediately from the fact that the
filtered De Rham complex is obtained by forgetting the weight filtration in the
full complex K•

X
. The degeneration of the spectral sequence is a consequence

of Theorem 3.18.
We next study the functorial properties of the De Rham complex. Let

f : Y ! X be a morphism of complex algebraic varieties. We have seen
(Theorem 5.29) that we can find a cubical hyperresolution f• : Y• ! X•

of the diagram f : Y ! X. Pulling back di↵erential forms, one obtains a
morphism of filtered complexes

f⇤ : ⌦̃•

X
! Rf⇤⌦̃

•

Y
.

Its cone is the De Rham complex for f :

⌦̃•

f
:= (Cone• f⇤, trivial filtration)

and its hypercohomology computes the cohomology of the mapping cone of
f . If X and Y are compact, the spectral sequence for the Hodge filtration
degenerates at E1 and Grp

F
Hm(Cone•(f)) = Hm(Grp

F
⌦̃•

f
). If f : Y ,! X

is a closed embedding, we write this also as ⌦̃•

(X,Y )
. Its hypercohomology

computes now the relative cohomology H⇤(X,Y ) with Hodge gradeds given
by Hq(⌦̃p

(X,Y )
).

Example 7.25. Suppose that X is a complex algebraic variety and j : ⌃ ,! X
a closed subvariety such that U = X � ⌃ is smooth. Then the De Rham
complex of the pair (X,⌃) can be calculated as follows. Choose a resolution
⇡ : Y ! X of X which is a biholomorphism away from E :=⇡�1⌃ and such
that E is a divisor with simple normal crossings. The natural map

⇡⇤ : ⌦̃•

(X,⌃)
! R⇡⇤⌦̃

•

(Y,E)

is a quasi isomorphism. This can be seen as follows. Let i : E ,! Y be the
inclusion, ⇡0 = ⇡|E and k = ⇡�i = j�⇡0. The 2-cubical variety

E
i������! Y??y⇡

0

??y⇡

⌃
j

������! X

Q

Q

Q
Qs

k
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is of cohomological descent since by assumption ⌃ contains the discriminant
locus of ⇡. It follows that the morphism

⌦̃•

X

(i
⇤
,�⇡

⇤
)

������! Cone•
✓

Rj⇤⌦̃
•

⌃
�R⇡⇤⌦̃

•

Y

⇡
0⇤

+j
⇤

�����! Rk⇤⌦̃
•

E

◆
[�1]

is a quasi-isomorphism. Using Example A.14 3) then translates this into the
desired quasi-isomorphism.

On the other hand, the De Rham complex of the embedding i : E ,! Y
can be computed as follows. We have seen that ⌦̃•

E
= ⌦•

E
/ Tors. As the map

i⇤⌦•

Y
! ⌦•

E
/ Tors

is surjective, its cone is filtered quasi isomorphic to the kernel of i⇤ (see Ex-
ample A.14 2). Hence, by equation (VII–7) above, we have

⌦̃•

(Y,E)
= IE⌦•

Y
(log E).

In passing, we note that this complex only computes the relative cohomol-
ogy of (Y,E) if Y is compact. If this is not the case, one has to compactify
(Y,E), say into (Y 0, E0) with Y 0 smooth, E0 a divisor such that E0 \ Y = E
and such that D :=Y �Y 0 together with E0 forms a divisor having simple nor-
mal crossings. The same argument as before then shows that the cohomology
of (Y, E) can be computed as the hypercohomology of the complex

IE0⌦•

Y 0(log(E0 + D)).

The spectral sequence for the trivial filtration degenerates at E1 and the
gradeds of the Hodge filtration on cohomology are given by the cohomology
of the gradeds of the trivial filtration on this complex.

7.3.2 Application to Vanishing Theorems

The idea that topological vanishing theorems together with Hodge theory
give analytic vanishing results is due to Kollár and Esnault-Viehweg (see for
instance [Es-V92] for references and further explanations)

To give an idea of this method let us discuss how it can be used to show
the Kodaira Vanishing Theorem [Kod53] which states that for any ample line
bundle L on a smooth projective manifold one has

Hp(X,L�1) = 0, for p < n = dimX.

Suppose first that L has a section vanishing simply along a divisor H ⇢ X with
simple normal crossings. This implies that the Hodge filtration on Hp(X �
H; C) is obtained from De Rham complex ⌦•

X
(log H) with its trivial filtration.

Since X�H is a�ne, by Theorem C.14, we have Hk(X�H; C) = 0 for k > n.
The Hodge gradeds of these cohomology groups are Hk�p(⌦p

X
(log H)) and so
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these vanish for k > n as well. In particular Hk�n(KX ⌦ L) = 0 for k > n
which, by Serre duality, is equivalent to Kodaira Vanishing. Next, for some
N � 1, LN will have a section vanishing simply along a smooth divisor H and
one considers the N -cyclic covering

f : Y ! X

ramified exactly along H. The line bundle f⇤H then has a section vanish-
ing simply along the divisor H 0 = f�1H and Y � H 0 is a�ne so that now
Hk(Y,KY ⌦ OY (H 0)) = 0. Since KY ⌦ OY (H 0) = f⇤(KX ⌦ L), the result
follows from the Leray spectral sequence for f .

This idea can be used without much di�culty to prove the Akizuki-Nakano
vanishing theorem [A-N]:

Theorem 7.26 (Akizuki-Nakano). Let X be a smooth complex projective
variety and L an ample line bundle on X. Then Hp(X,⌦q

X
⌦ L) = 0 for

p + q > n.

Instead of giving the proof, we shall see that it follows also from our main
result Theorem 7.29.

We next want to show how purely local results can be derived from global
vanishing theorems.

Theorem 7.27 (Global-to-local principle). Suppose that f : X ! Y is
a morphism between projective varieties, q a natural number and F a coherent
sheaf on X with the property that Hq(X,F ⌦ f⇤L) = 0 for all ample line
bundles L on Y . Then Rqf⇤F = 0.

Proof. Let L be su�ciently ample so that Rqf⇤F ⌦L is generated by sections
and Hi(Y,Rjf⇤F⌦L) = 0 for i > 0 and all j � 0. The Leray spectral sequence

Ei,j

2
= Hi(Y,Rjf⇤F ⌦ L)) Hi+j(X,F ⌦ f⇤L)

then degenerates at E2 so that H0(Y, Rqf⇤F ⌦ L) = Hq(X,F ⌦ f⇤L). But
the latter space vanishes by assumption so that Rqf⇤F = 0. ut

This principle can be used to derive statement b) from a) in the following
result due to Grauert and Riemenschneider [Gr-Rie]:

complex algebraic variety, ⇡ : Y ! X a proper modification with Y
smooth and L an ample line bundle on X. Then

a) Hq(Y,KY ⌦ ⇡⇤L) = 0 for q > 0;
b) Rq⇡⇤⌦n

Y
= 0 for q > 0.

This idea will be used in the proof theorem of the main theorem below
which generalizes the Grauert-Riemenschneider result as we shall see.

We now go to singular varieties and use the filtered De Rham complex
instead of the logarithmic De Rham complex. The main result generalizing all
of the above is as follows:

Theorem 7.28 (Grauert-Riemenschneider).Let X be a compact n-dimen
sional

-
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Theorem 7.29 ([G-N-P-P, Ste85a]). Let X be a compact complex alge-
braic variety of dimension n and let L be an ample line bundle on X. Let
(⌦̃•

X
, F ) be the filtered De Rham complex of X (so F is the trivial filtration).

Then

a) the hypercohomology groups H
m(X,Grp

F
⌦̃•

X
⌦ L) vanish for m > n;

b) the cohomology sheaf Hm(Grp

F
⌦̃•

X
) vanishes for m < p or m > n.

Guillen-Navarro Aznar-Puerta-Steenbrink vanishing theorem

Remark. For X smooth, the complex Grp

F
⌦̃•

X
is just the single sheaf ⌦p

X

placed in degree p so that its m-th hypercohomology group is Hm�p(X, ⌦p

X
)

and a) in the preceding Theorem is just the Akizuki-Nakano vanishing theo-
rem. On the other end of the extreme, to calculate Fn⌦̃•

X
it su�ces to take

a smooth proper modification ⇡ : Y ! X and take ⇡⇤⌦n

Y
viewed a complex

concentrated in degree n. We thus obtain the vanishing result of Grauert and
Riemenschneider.

Proof (of Theorem 7.29). We reduce the theorem to the following relative
version.

Proposition 7.30. Let X be a compact complex algebraic variety of dimen-
sion n and let L be an ample line bundle on X. Let i : ⌃ ,! X be a closed
subvariety such that the complement X �⌃ is smooth. Then

a) the hypercohomology groups H
m(X,Grp

F
⌦̃•

X,⌃
⌦L) vanish for m > n;

b) the cohomology sheaf Hm(Grp

F
⌦̃•

X,⌃
) vanishes for m < p or m > n.

To see that this Proposition implies Theorem 7.29, we use the p-graded
piece of the F -filtration of the exact sequence of the cone (Appendix A, for-
mula A–12)

0! i⇤⌦̃
•

⌃
! ⌦̃•

X,⌃
! ⌦̃•

X
[1]! 0,

once in hypercohomology after tensoring with OX(L) and once in cohomology.
The result of Theorem 7.29 then follows from Prop. 7.30 by induction on the
dimension of X. ut

Proof (of Prop. 7.30). To start, observe that we have already computed the
filtered De Rham complex ⌦̃•

X,⌃
in Example 7.25. We use the same notation

employed there. So ⇡ : Y ! X is a proper smooth modification and E = ⇡�1⌃
is a divisor with simple normal crossings and ⌦̃•

X,⌃
= IE⌦•

Y
(log E) so that

H
m(X,Grp

F
⌦̃•

X,⌃
⌦ L) = Hm�p(Y, IE⌦p

Y
(log E)⌦ ⇡⇤L)

and
Hm(Grp ⌦̃•

X,⌃
) = Rm�p⇡⇤IE⌦p(log E).

It follows that it is su�cient to show the following two assertions:

a0) Hq(Y, IE⌦p

Y
(log E)⌦ ⇡⇤L) = 0 for p + q > n,
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b0) Rq⇡⇤IE⌦p

Y
(log E) = 0 for p + q > n.

By the global to local principle, it su�ces to prove a0. Instead, we prove the
dual statement. To formulate it, introduce the rank n-bundle

V :=TX(� log E),

by definition the dual of ⌦1(log E). Since ⌦n

Y
(log E) = ⌦n

Y
⌦ O(E), the iso-

morphism
⇤pV ⌦ ⇤nV_ ⇠�! ⇤n�pV_

then yields
⌦p

Y
(log E)_ ⌦KY ' ⌦n�p

Y
(log E)⌦OY (�E).

It follows that Serre duality takes the form

Hp(Y, ⌦q

Y
(log E)⌦ ⇡⇤L�1)_ = Hn�p(Y, ⌦n�q

Y
(log E)⌦OY (�E)⌦ ⇡⇤L).

Hence, since IE = OY (�E), to prove a0) we are reduced to proving

Hq(Y, ⌦p

Y
(log E)⌦ ⇡⇤L�1) = 0, p + q < n.

To show this, we reduce first to the case when L is very ample. This goes
as follows. Let LN be very ample. Choose a section of LN vanishing along a
smooth hyperplane H which is transverse to all mappings Ei1

\ · · ·\Eip ! X,
where the Ej are the components of E. Let f : X 0 ! X, respectively g : Y 0 !
Y be the N -cyclic covering branched along H, respectively H 0 = ⇡�1H. Then
Y 0 is smooth and ⇡ induces a proper modification ⇡0 : Y 0 ! X 0 fitting in a
commutative diagram

Y 0
g

�! Y??y⇡
0

??y⇡

X 0
f

�! X.

Moreover if ⌃0 = f�1⌃, the complement X 0 � ⌃0 is smooth and now Y 0 �
g�1H 0 is a�ne. Put E0 = g�1E = (⇡0)�1⌃0 and L0 = f⇤L and assume that
the groups Hq(Y 0, ⌦p

Y 0(log E0)⌦⇡0⇤L0�N ) vanish for p+q < n. Since E+H 0 is
a divisor with simple normal crossings, a calculation (see for instance Lemma
3.16 in [Es-V92]) shows that

g⇤⌦
p

Y 0(log E0) =
NM

i=0

⌦p

Y
(log E)⌦ ⇡⇤L�i.

Since (⇡0)⇤L0 = g⇤⇡⇤L, the Leray spectral sequence for g then gives

0 = Hq(Y, g⇤⌦
p

Y 0(log E0)⌦ ⇡⇤(L�N )) =
NM

i=0

Hq(Y,⌦p

Y
(log E)⌦ ⇡⇤(L�N�i))

and the desired vanishing then follows. For the remainder of the proof we
thus may indeed replace Y 0, X 0, ⇡0, L0 by Y,X, ⇡, L thereby assuming that
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L is very ample with a section vanishing along a hypersurface H with the
required transversality.

We complete the proof by induction on the dimension. Indeed H 0 = ⇡�1H
is smooth and H 0[E is a divisor with simple normal crossings as is D = E\H 0,
and then the induction hypothesis implies

Hq(H 0, ⌦p

H0(log D)⌦ (⇡|H)⇤L�1) = 0, for p + q < n� 1. (VII–8)

Next, since ⇡⇤L�1 is the ideal sheaf of H 0, the groups Hq(Y,⌦p

Y
(log E) ⌦

⇡⇤L�1) occur in the long exact sequence in cohomology of the tautological
sequence

0! IH0 ! OY ! OH0 ! 0

tensored by ⌦p

Y
(log E). So it su�ces to show that the maps

Hq(Y,⌦p

Y
(log E))

cpq��! Hq(H 0, ⌦p

Y
(log E)⌦OH0) (VII–9)

are isomorphisms for p + q < n� 1 and an injection for p + q = n� 1.
Next, we observe that the map ⇡ maps D onto S = ⌃ \ H while the

smooth complement H 0 � D maps isomorphically onto H � S. So the pair
(Y �E,H 0�D) maps isomorphically onto (X �⌃,H �S). By the version of
the Lefschetz theorem stated in Remark C.16, the restriction maps

Hk(X �⌃)! Hk(H � S)

for the latter are isomorphisms in the range k < n�1 and injective if k = n�1.
These maps are morphisms of mixed Hodge structures and so, taking the
graded parts of the Hodge filtration, the maps

apq : Hq(Y, ⌦p

Y
(log E))! Hq(H 0, ⌦q

H0(log D))

are likewise isomorphisms for p + q < n � 1 and injective for p + q = n � 1.
These maps factor as follows

Hq(Y, ⌦p

Y
(log E))

cpq��! Hq(H 0, ⌦p

Y
(log E)⌦OH0)

bpq��! Hq(H 0, ⌦p

H0(log D)).

The first map cpq is the map (VII–9). The second map is induced by the long
exact sequence

0! ⌦p�1

H0 (log D)⌦OH0(�H 0)! ⌦p

Y
(log E)⌦OH0 ! ⌦p

H0(log D)! 0.

To show that this indeed is an exact sequence of locally free OH0 -sheaves, by
standard linear algebra considerations it su�ces to do this for p = 1 where it
follows from a local calculation which we omit.

Since OH0(�H 0) is the restriction of ⇡⇤L�1 to H 0, the long exact sequence
in cohomology together with the induction hypothesis (VII–8) then show that
bpq is an isomorphism for p + q < n� 1 and injective for p + q = n� 1. Since
the same is true for apq = bpq

�cpq , we have this result for cpq as well, which
is what we wanted to prove. ut
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7.3.3 Applications to Du Bois Singularities

Recall the notion of a Cohen-Macaulay singularity from § 2.5. We use the
criterion (see [S-T, Thm 1.14]) :

(X,x) Cohen-Macaulay () Hk

{x}
OX = 0, k = 0, . . . ,dim X � 1.

The dualizing complex !•

X
for general complex spaces X (see § 2.5) is an

ingredient in Grothendieck’s local duality theorem ([Groth67, Thm. 6.3]):

Theorem 7.31 (Local Grothendieck duality theorem). Let X be a
complex space of pure dimension n and let F be a coherent sheaf which is
locally free on the smooth locus of X. For every x 2 X there is a canonical
isomorphism

Extq

OX,x
(Fx, !•

X,x
) ⇠�! Hn�q

{x}
(X,F)_.

As a consequence, (X,x) is Cohen-Macaulay if and only if the dualizing
complex only has cohomology in degree 0. This sheaf is the dualizing sheaf
!X . We say that the singularity is Gorenstein if !X,x = OX,x. Local com-
plete intersections are always Gorenstein.

For isolated singularities (X, x), the local cohomology groups can be cal-
culated by means of a good resolution ⇡ : Y ! X. By definition this means
that X is a contractible Stein space, Y is smooth and the exceptional divisor
E = ⇡�1x has simple normal crossings. In this setting there is another useful
duality theorem (see [Kar, Theorem 3.2]):

Theorem 7.32 (Local version of Serre’s duality theorem). Let
⇡ : (Y,E) ! (X,x) be a good resolution. Let F be a locally free sheaf on Y .
Then for q < n the local cohomology groups Hq

E
(Y,F) are finite dimensional

and there is a canonical duality isomorphism

Hq

E
(Y,F) ⇠�! Hn�q(E, (F_ ⌦⌦n

Y
)|E)_.

Corollary 7.33. Let ⇡ : (Y, E) ! (X, x) be a good resolution of an isolated
n-dimensional singularity x. Then

Hq(Y,OY ) ⇠= Hq+1

{x}
(X,OX), q = 0, . . . , n� 2.

Proof. By Grauert-Riemenschneider vanishing (Theorem 7.28), the space
Hn�q(E,⌦n

Y
|E) vanishes for q < n since it is the stalk of Rn�q⇡⇤⌦n

Y
at x.

By local Serre duality, the latter space is dual to Hq

E
(Y,OY ). So, by the exact

sequence in local cohomology, setting U = Y � E = X � {x}, the restriction
maps Hq(Y,OY ) ! Hq(U,OU ) are isomorphisms for q < n � 1. Then the
exact sequence in local cohomology for (X, x) together with the fact that X
is Stein gives the isomorphisms Hq(OU ) ⇠�! Hq+1

{x}
(X,OX). ut



184 7 Applications to Algebraic Cycles and to Singularities

It follows that the numbers dim Hp(Y,OY ) are invariants of the singularity
for p = 1, . . . , n � 2. As to p = n � 1, denoting by L2 the “square integrable
sections”, one has ([Kar, Prop. 4.2]):

dim Hn�1(Y,OY ) = dim
�
H0(U, ⌦n

U
)/L2(U, ⌦n

U
)
�
. (VII–10)

There is one further invariant, the �-invariant which measures how far the
singularity is from being normal, where we say that a singularity is normal,
respectively weakly normal if its is isomorphic to its normalization, its weak
normalization, respectively. It is defined as follows:

�(X,x) :=dimC(OgX,x
/OX,x)

where the tilde denotes the normalization. Traditionally, the geometric
genus is related to these invariants by means of the defining formula

(�1)npg(X,x) :=��(X,x) +
n�1X

q=1

(�1)q+1 dimC Hq(Y,OY ).

For a normal Cohen-Macaulay singularity only Hn�1(Y,OY ) can be non-zero
so that

pg(X, x) = dim Hn�1(Y,OY ). (VII–11)

We say that a normal singularity is rational if it is Cohen-Macaulay and if pg

vanishes. Equivalently, for a good resolution f : Y ! X we have Hq(OY ) = 0
for all q > 0. Another way of saying this is that the higher direct images
Rif⇤OY , i > 0 all vanish. In fact this inspires the definition for possibly non-
isolated rational singularities: a variety X has rational singularities if for
every resolution of singularities f : Y ! X one has Rif⇤OY = 0, i > 0. One
can show ([K-K-M-S, pp. 50–51]) that it su�ces to verify this assertion for
one resolution, for instance, for a good resolution in case we have an isolated
singularity. This shows that the definitions are indeed compatible.

By (VII–10) and (VII–11) above, a Cohen-Macaulay singularity is rational
if all n-forms on U extend to square integrable ones. Examples of such sin-
gularities include quotient singularities and toroidal singularities. Note that a
quotient singularity need not be Gorenstein; this is only the case for quotients
by a subgroup of SL(n).

A class of singularities that has become important in Mori’s approach to
the classification of higher dimensional varieties (see for example [C-K-M])
is the class of canonical singularities. To define these, recall that on a
normal complex algebraic variety the canonical divisor KX is the divisor of a
meromorphic n-form on X, where n = dim X. Equivalently, with i : Xreg ,! X
the inclusion of the smooth locus into X, we have

!X :=OX(KX) = i⇤⌦
n

Xreg
.

Note that for a Cohen-Macaulay singularity the sheaf !X is indeed the dual-
izing sheaf so that this notation is consistent.
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Now X has canonical singularities if first of all a multiple, say rKX of
KX is a Cartier divisor and secondly, if for every resolution of singularities
f : Y ! X we have f⇤(rKX) = rKY +

P
riEi where ri � 0 and Ei runs

over the exceptional divisors. More generally, if the numbers ai = ri/r always
satisfy ai � �1, respectively ai > �1, we say that X has log terminal
respectively log canonical singularities. The smallest positive integer r
such that rKX is Cartier is called the index of the singularity. By [Reid,
3.6] one can always locally achieve index 1 by a finite surjective morphism
X 0 ! X. Gorenstein singularities are examples of index 1 singularities.

Coming back to the filtered De Rham complex, one may introduce the Du
Bois invariants

bp,q(X, x) :=dim Hq(⌦̃p

X,x
).

For isolated singularities one can take for X a contractible Stein space, so
that Hq(OX,x) = 0 whenever q > 0. The natural morphism

'0 : OX ! ⌦̃0

X

then induces isomorphisms in cohomology if

i) OX

⇠�! H0(⌦̃•

X
)), i.e. X is weakly normal, and

ii) b0,q(X,x) = 0 for q > 0.

This motivates the following definition.

Definition 7.34. A variety X has Du Bois singularities if '0 : OX

qis

⇠��! ⌦̃0

X
.

A point x 2 X is a Du Bois singularity if '0

x
is an isomorphism. So X is Du

Bois if all its points are du Bois.

Examples 7.35. 1) As to curve singularities, we calculated the De Rham com-
plex explicitly and so it follows that a curve is Du Bois if and only if it is
weakly normal, that is all branches are smooth and the tangent directions
are all distinct.
2) Rational singularities are Du Bois. We give here a sketch of the proof from
[Kov]. Suppose that a complex space X has at most rational singularities.
So, if f : Y ! X is a resolution of singularities, the induced map OX !
Rf⇤OY (of complexes ofOX -modules) is a quasi-isomorphism. In particular,
this map has a left inverse in the appropriate derived category. Since the
preceding map factors over the natural map h : OX ! ⌦̃0

X
, also this latter

map has a left inverse. Now we have the following
Splitting principle: If the natural map h : OX ! ⌦̃0

X
has a left inverse,

X has only Du Bois singularities.
To show this, we first observe that the assertion is local and so we may
assume that X is algebraic. Next, the assumption on h is stable under
taking hyperplanes. On the other hand, a cubical resolution for X induces
one for its generic hyperplane H. This implies that the filtered De Rham
complex ⌦̃0

H
is quasi-isomorphic to OH ⌦ ⌦̃0

X
. So, if X has points that are

not Du Bois, a generic hyperplane section will have the same property. In
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proving the assertion, we may therefore assume that X is Du Bois except
maybe at one isolated point x. So h is a quasi-isomorphism except maybe
at x. The assumption on h implies in particular that the induced map on
the level of the local (hyper)cohomology groups

hx : Hk

x
(X,OX)! H

k

x
(X, ⌦̃0

X
)

is injective for all k. We shall show that these maps are surjective as well.
Here we use the assumption that X is algebraic. We choose a compacti-
fication X̄ with complement a divisor D and we use (see Prop. 7.24(iii))
that the spectral sequence of hypercohomology associated to the filtered De
Rham complex on X̄ degenerates at E1. In particular the map Hk(X̄, C)!
H

k(X̄, ⌦̃0

X̄
) is surjective. Since it factors over Hk(X̄, C) ! Hk(X̄,OX̄),

the map h : Hk(X̄,OX̄) ! H
k(X̄, ⌦̃0

X̄
) is surjective as well. Now put

Z = D [ {x} and consider the commutative diagram

H
k�1(X � {x},OX) ! H

k
Z(X̄,OX̄) ! H

k(X̄,OX̄) ! H
k(X � {x},OX)??y

??yhZ

??yh

??y
H

k�1(X � {x}, ⌦̃0

X) ! H
k
Z(X̄, ⌦̃

0

X̄) ! H
k(X̄, ⌦̃

0

X̄) ! H
k(X � {x}, ⌦̃0

X).

In this diagram the leftmost and the rightmost vertical maps are isomor-
phisms for all k. We have seen that the map h is onto. It follows that hZ

must be onto. In particular Hk

x
(X̄,OX̄) ! H

k

x
(X̄, ⌦̃0

X̄
) must be onto, and

by excision this proves that indeed Hk

x
(X,OX)! H

k

x
(X, ⌦̃0

X
) is onto.

To complete the proof, we invoke a general
Localization principle: Suppose that h : F• ! G• is a morphism of
complexes of sheaves on X that is a quasi-isomorphism everywhere except
maybe at x 2 X. Suppose moreover that h induces for all k isomorphisms
H

k

x
(F•)! H

k

x
(G•). Then h is also a quasi-isomorphism at x.

To see this, note that replacing G• by a quasi-isomorphic complex, we may
assume (see § A.1) that h is injective with quotient the mapping cone
Q• = Cone•(h). By assumption, Q• is everywhere acyclic except maybe
at x. The assumption on H

k

x
implies that H

k

x
(Q•) = 0 and then the exact

sequence for local cohomology yields H
k(X,Q•) ⇠�! H

k(X � {x},Q•) = 0.
The spectral sequence Hi(X, Hj(Q•)) =) H

i+j(X,Q•) degenerates since
Hi(Q•) is supported on x and so for all k we have 0 = H

k(X,Q•) =
H0(X,Hk(Q•)) = Hk(Q•)x, as desired.
3) Log terminal singularities are Du Bois. To show this, following again
[Kov], we first observe that, since the statement is local, we may assume
that our singular variety X admits a finite cover f : X 0 ! X with canonical
singularities of index one [Reid, 3.6]. Suppose that we can show that X 0 is
Du Bois. Then X is Du Bois as well: we claim that OX ! Rf⇤OX0 has
a left inverse so that we can apply the above splitting principle. Indeed,
Rif⇤OX0 = 0 for i > 0 since f is finite and the (normalized) trace map splits
OX ! f⇤OX0 . So it remains to show that canonical index 1 singularities
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U are Du Bois. Let f : V ! U be a resolution of singularities. Then, by
definition, f⇤!U is a subsheaf of !V and so f⇤!V = !U . By the Grauert-
Riemenschneider vanishing result (Theorem 7.28(ii)), Rif⇤!V = 0 for i > 0.
It follows that Rf⇤!V is quasi-isomorphic to !U . So the inclusion f⇤!U !
!V yields

Rf⇤f
⇤!U ! Rf⇤!V

qis

⇠��!!U

which, away from the singularities, and hence everywhere, is a left inverse
for !U ! Rf⇤f⇤!U . Hence, upon tensoring with !�1

U
this gives a left inverse

for OU ! Rf⇤OV . The conclusion again follows on applying the splitting
principle.
As to log canonical singularities, we have a partial result due to Kovács
([Kov, Theorem K]) which is too technical to reproduce here.
4) Gorenstein Du Bois surface singularities have been classified. In addition
to the rational singularities we have the following list:
– the simple elliptic and the cusp singularities ([Ste83]);
– ordinary double curve singularities (locally of the form xy = 0), the

pinch point (xy2 = z2 and three “degenerate cusps” with equations
xyz = 0 (the ordinary triple point), z2+x2y2 = 0 and z2+y3+x2y2 = 0.
See [Str].

5) Non-Gorenstein Du Bois singularities abound. Take a smooth curve with
a suitably ample line bundle on it and blow down the zero section. The
resulting singularity is such an example. See [DuB, Prop. 4.13].
6) See [Is85], [Is86], [Is87] for more on Du Bois singularities.

Historical Remarks. The statement of the (original) Hodge conjecture can be
found in [Ho50]. Grothendieck’s generalization is stated in [Groth69], while the ver-
sion for singular varieties can be found in [Jann]. For a nice overview of what is
known for the Hodge conjecture see [Lewis].

Gri�ths introduced the intermediate Jacobian in [Grif68], the relation with
Deligne cohomology is due to Deligne. See [Es-V88] and [ElZ-Z]. For a rather com-
plete overview of Deligne-Beilinson cohomology see [Es-V88].

The vanishing results in § 7.3.2 are largely due to Guillén, Navarro Aznar,
Pascual-Gainza and Puerta [G-N-P-P]. We present Steenbrink’s simplified proof
from [Ste85a].

The filtered De Rham complex has been introduced by Du Bois [DuB] and
motivates the terminology “Du Bois singularity”. § 7.3.3 contains further historical
remarks on singularities.
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Mixed Hodge Structures on Homotopy Groups
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Hodge Theory and Iterated Integrals

In this chapter we give Hain’s construction of a mixed Hodge structure on homotopy
groups. His results are explained in § 8.2 after a first section in which we collect some
basic material from homotopy theory that we need later on. A central result in this
section is the Borel-Serre theorem which (under suitable assumptions) relates the
homotopy groups of a topological space to the homology of its loop space. Loop
spaces are no longer finite dimensional manifolds and so we can not hope to put
directly a mixed Hodge structure on their cohomologygroups. However, dually, the
cohomology of a loop space can be calculated by means of an integration procedure
which associates to an ordered set of forms on a di↵erential manifold a single form
on its loop space, which is called an “iterated integral”. It is explained in § 8.3.

In § 8.4 and § 8.5 we explain how to deal with the fundamental group of a smooth
complex projective variety. The mixed Hodge structure given there depends on the
choice of base points.

The construction for the higher homotopy groups for a simply connected smooth
complex projective variety is carried out in § 8.6 and § 8.7. It proceeds along the
following lines. The starting point is a theorem due to Chen which states that the
cohomology of the loop space of X can be calculated by means of iterated integrals
and this can be done through an algebraic construction on the de Rham complex
on X itself, the “bar construction”. Starting with weight and Hodge filtrations on
the De Rham complex of X we thus naturally get similar filtrations on its bar
constructions.

What complicates the story is that the (duals of the) homotopy groups are not
given by the full cohomology of the loop space, but rather by its “indecomposables”.
These are defined by means of the multiplicative structure of the cohomology ring.
Therefore the usual cup product on the De Rham complex on X is needed to cap-
ture the indecomposables in the cohomology of the loop space of X. This leads to
multiplicative mixed Hodge complexes which incorporates these ingredients on the
level of complexes. However, we also need a good product on the level of rational
complexes. The classical cup-product on the level of cochains is not the correct in-
gredient, since one needs a (graded) commutative product. This is explained in § 8.6,
where we construct the De Rham complex and its bar construction over the rationals

making use of a certain rationally defined complex introduced by Sullivan and which
does have a graded commutative product. We then have all the ingredients to put
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the structure of a mixed multiplicative Hodge complex on the De Rham complex
leading to the desired mixed Hodge structure on the cohomology of the loop space
and on its indecomposables.

We will not give full proofs for all of Hain’s results. We discuss fundamental
groups of smooth projective varieties and homotopy groups of smooth projective
varieties and only outline how to adapt the latter to the case of arbitrary complex
algebraic varieties. Also, the complementary results stated in § 8.2 will not be proved.
However, all the ingredients necessary to understand Hain’s proofs of these results
can be found in this chapter.

8.1 Some Basic Results from Homotopy Theory

We start by recalling the definition and the basic properties of the homotopy
groups. For any two pairs of topological spaces (X,A) and (Y, B) we use the
notation [(X,A), (Y,B)] for the set of homotopy classes of maps X ! Y
sending A to B (any homotopy is supposed to send A to B as well). Let
I = [0, 1] be the unit interval. Fixing a point s on the k-sphere Sk, we have

⇡k(X,x) = [(Ik, @Ik), (X, x)] = [(Sk, s), (X, x)];

There is a natural product structure on these sets (divide Ik in two and use
the first map on one half and the second map on the other half). This makes
⇡k(X,x) into a group, which turns out to be abelian for k � 2.

We next relate the (k + 1)-st homotopy group of any pathwise connected
topological space X to the k-th cohomology group of the loop space. We
denote the path space of X, equipped with the compact-open topology by
PX, and the loop space of loops based at x, with the induced topology by
PxX.

One has natural isomorphisms

⇡k+1(X, x) ⇠�! ⇡k(PxX, ex) k � 0,

where ex is the constant loop at x. The isomorphism is obtained by viewing
a map [Ik+1, @Ik+1]! (X,x) as a parametrized map f : [Ik, @Ik]⇥ [I, @I]!
(X,x), yielding the map Ik ! PxX sending u 2 Ik to the loop t 7! f(u, t).

Homotopy and homology are related through the Hurewicz homomor-
phism

hk : ⇡k(Y, y)! Hk(Y ),

defined by associating to the class of a map f : Sk ! Y the image under f⇤
of a generator of Hk(Sk). The following important result tells us when the
Hurewicz homomorphism actually is an isomorphism:

Theorem 8.1(Hurewicz theorem). Suppose that (X, x) is (k�1)-connected,
i.e. ⇡s(X,x) = 1, s = 0, . . . , k � 1. Then hk is an isomorphism.
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The map dual to hk is a homomorphism Hk(Y ; Q) ! Hom(⇡k(Y ), Q). The
left hand side can be huge. But in fact the homomorphism factors over a
quotient of Hk(Y ; Q), the indecomposables of degree k, obtained by dividing
out the subspace generated by products of two or more factors of positive
degree. This follows from the fact that the cohomology ring of a sphere has
no non-trivial cup products. For later use, we need a name for the quotient
just considered.

Definition 8.2. – Let R be a ring and A an R-algebra with unit 1. An
augmentation is an R-algebra homomorphism ✏ : A! R sending 1 to 1
and its kernel is called the augmentation ideal IA.

– If R = k is a field, ✏ : A! k an augmentation, the k-vector space

QA = (IA)/(IA)2 = IA⌦A k

is called the space of the indecomposables of A. It can be identified
with the k-vector space with basis a minimal set of generators of A as a
k-algebra.

Example 8.3. i) Let G be a group, and let R[G] be its group ring with
R-coe�cients. The augmentation ✏ : R[G]! R is the R-homomorphism
defined by ✏(r) = r, ✏(g) = 1. In this case the augmentation ideal J is
generated by the elements g � 1, g 2 G. If G = ⇡1(X, x), the funda-
mental group of a topological space, its group ring can be identified with
H0(PxX): indeed, the path components of the loop space PxX are the
homotopy classes of loops based at x. This shows that this ring can be
very big indeed. If however the fundamental group is finitely presented,
the quotients Z⇡1(X,x)/Jk by the successive powers of the augmentation
ideal J are finitely generated. So it makes sense to ask whether in this
case these quotients have a mixed Hodge structure.
ii) Let Y be a connected topological space and A = H⇤(Y ; Q) its
cohomology-algebra. The inclusion of a point y ,! Y induces an augmen-
tation H⇤(Y ; Q) ! Q whose kernel is exactly the reduced cohomology
having only strictly positive degrees. So pointed connected spaces give
augmented cohomology algebras. An example is provided by the loop
space Y = PxX of a simply connected pair (X, x).

So, our discussion provides us with a morphism

Qhk : QHk(Y ; Q)! Hom(⇡k(Y, y), Q). (VIII–1)

This map is rarely an isomorphism, but if Y is a loop space, we can apply
a result due to Borel and Serre. Its formulation requires yet another notion
from homotopy theory which we briefly discuss. Details can be found in [Wh].

Example 8.4. An H-space is a pointed space (Y, y) equipped with a continu-
ous map h : Y ⇥ Y ! Y such that the two inclusions z 7! (z, y), z 7! (y, z)
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composed with h are homotopic to the identity. Such a map is called a multi-
plication. If this multiplication is associative up to homotopy and if moreover
there exist a map i : (Y, y)! (Y, y) which serves as an inverse up to homotopy,
we say that (Y, y) is a group like H-space.

The standard example of a group like H-space is the loop space PxX
of the loops at x (take the constant loop at x as the base point in PxX
and composition of loops for the multiplication map). Another example is a
topological group with identity as base point and group multiplication as the
multiplication map.

Now we can formulate the result we are after (see [Mil-Mo]):

Theorem 8.5 (Theorem of Borel and Serre). Let Y a connected H-
space such that ⇡k(Y, y) is finitely generated. Then the map Qhk (VIII–1) is
an isomorphism.

Corollary 8.6. Let X be a simply connected topological space such that
⇡s+1(X) is finitely generated. Then we have an isomorphism

Qhs : QHs(PxX; Q) ⇠�! Hom(⇡s(PxX), Q) ⇠�! Hom(⇡s+1(X, x), Q).

We can indeed apply this to algebraic varieties:

Lemma 8.7. The fundamental group of a complex algebraic variety is finitely
presented. For simply connected complex algebraic varieties the higher homo-
topy groups are finitely generated.

Proof. Any compact algebraic variety admits a triangulation and hence its
fundamental group is finitely presented. A non compact algebraic variety can
be compactified by a divisor whose components meet transversally. We can
then triangulate the compactification in such a way that the compactifying
divisor becomes a subcomplex. The complement is thus a finite union of (open)
simplices and hence the fundamental group is again finitely presented.

The higher homotopy groups of a finite cell complex in general are not
finitely generated, but for simply connected spaces with finitely generated
homology (such as complex algebraic varieties) this still holds. This is a non-
trivial result in homotopy theory. See e.g. [Span, p. 509]. ut

We next explain the extra structure which is present on the cohomology of
H-spaces such as PxX, that of a Hopf algebra, whose definition we now give:

Definition 8.8. Let k be a field and A a k-algebra containing k. Suppose
that ✏ : A ! k is an augmentation. A co-multiplication is an algebra
homomorphism � : A! A⌦k A and it makes A into a Hopf algebra if it is
associative in the sense that (�⌦1)�� = (1⌦�)�� , and if the augmentation
satisfies the rule (✏ ⌦ idA)�� = idA = (idA⌦✏)��. If in addition A is graded
and the multiplication and the co-multiplication preserve the grading we say
that A is a graded Hopf algebra. If in addition the multiplication Ap⌦Aq !
Ap+q satisfies xy = (�1)pqyx, we say that the the Hopf algebra is graded
commutative.
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Example 8.9. Let Y be any connected H-space with multiplication h. Suppose
that the cohomology H⇤(Y ) of Y is finitely generated. Then one has a Künneth
decomposition H⇤(Y ⇥ Y ) ⇠= H⇤(Y )⌦H⇤(Y ) and hence a co-product

µ : H⇤(Y ) h
⇤
��! H⇤(Y ⇥ Y ) ' H⇤(Y )⌦H⇤(Y ).

To verify that H⇤(Y ) with the usual cup product multiplication m and co-
product µ is a Hopf algebra, one uses that the multiplication m is related to
the diagonal embedding � : X ,! X ⇥X as follows

m : H⇤(Y )⌦H⇤(Y ) ⇠= H⇤(Y ⇥ Y ) �
⇤
��! H⇤(Y ).

Returning to a general graded commutative Hopf algebra A, the co-
product � induces a new co-product �(J) by composing it with the operator

J : A⌦A! A⌦A

(a⌦ b) 7! (�1)pqb⌦ a, a 2 Ap, b 2 Aq.

The co-bracket is the map

���J : A! A⌦A. (VIII–2)

This co-bracket descends to the indecomposables and makes QA into what is
called a Lie co-algebra.

In particular, by Example 8.9, for any group-like H-space Y the indecom-
posables QH⇤(Y ) form a co-algebra equipped with a co-bracket. For such Y
there is a dual procedure leading to a bracket

⇡s(Y, y)⇥ ⇡t(Y, y)
[ , ]

��! ⇡s+t(Y, y)

as follows. For simplicity of notion, we shall use u · v for the product h(u, v),
u, v 2 Y . Let there be given maps f : (Is, @Is) ! (Y, y) and g : (It, @It) !
(Y, y), then the product map f · g : (Is, @Is) ⇥ (It, @It) = (Is+t, @Is+t !
(Y, y) is given by (f · g)(u, v) = f(u) · g(v). Since Y is group-like, for every
f : (Is, @Is)! (Y, y) there is an inverse map f�1 : (Is, @Is)! (Y, y) defined
by f�1(u) = f(u)�1. The bracket is just the commutator:

[f, g] := f · g · f�1 · g�1.

That this bracket is graded commutative and that the Jacobi identity holds
is not trivial. See [Wh]. In the special case where Y = PxX, (X,x) simply
connected, the bracket becomes

⇡s+1(X,x)⇥ ⇡t+1(X, x)! ⇡s+t+1(X, x),

the Whitehead product. Under the duality given by Cor. 8.6 the co-product
on QH⇤(PxX; Q) is indeed dual to the Whitehead product:
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Proposition 8.10. Let (X,x) be a connected simply connected space all of
whose homotopy groups are finitely generated. Then the Hurewicz isomor-
phisms induce an isomorphism of graded Lie co-algebras

QH⇤(PxX; Q)[�1] ⇠�!
M

s�1

Hom(⇡s(X,x); Q),

where the co-bracket is dual to the Whitehead product.

We close this section by discussing the concept of a (Hurewicz) fi-
bration. This is a continuous surjective map between topological spaces
p : E ! B which has the homotopy lifting property: given a map g : X ! E,
every homotopy of p�g can be lifted to a homotopy of g. For such a fibration
any two fibres are homotopy equivalent [Span, p.101] and with e 2 E the base
point and F the typical fibre, one has the homotopy exact sequence ([Span,
p. 377])

· · ·⇡n(F, e)! ⇡n(E, e)! ⇡n(B, p(e))! ⇡n�1(F, e) · · · (VIII–3)

Although fibrations look rather special, up to homotopy all maps are fibra-
tions. To explain this, we first recall that f : (X,x)! (Y, y) is a homotopy
equivalence if f has an inverse g up to homotopy, i.e. f�g and g�f are homo-
topic to the identity. Clearly homotopy equivalences induce isomorphisms on
homotopy groups. The converse holds whenever X and Y are CW complexes.
This result is due to Whitehead [Span, p. 405]).

It is now quite easy to see how one can functorially replace any continu-
ous map f : X ! Y by a Hurewicz fibration. Using the path space PY of
continuous paths in Y , the total space of the fibration is

Ef = {(x, �) 2 X ⇥ PY | �(0) = f(x)}

and the map ⇡f : Ef ! Y given by sending a pair (x, �) to the endpoint
�(1) of � gives it the structure of a fibration. The map s : X ! Ef which
sends x to the pair (x, constant path at f(x)) is a homotopy equivalence so
that indeed f : X ! Y may be replaced by the fibration ⇡f : Ef ! Y . The
homotopy fibre Ef (y) of f above y by definition is the fibre of ⇡f above y.
Its homotopy type depends only on the path component to which y belongs.
So, if we start with a Hurewicz fibration over a path connected space, any
fibre is homotopy equivalent to the homotopy fibre.

8.2 Formulation of the Main Results

Our ultimate aim is to put a mixed Hodge structure on the homotopy groups of
any complex algebraic variety. As explained below, there is a crucial di↵erence
between the fundamental group and the higher homotopy groups due to the
fact that the fundamental group in general is not abelian in contrast to the
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higher homotopy groups. There are also technical di�culties in the case of
higher homotopy if one does not assume that the variety is simply connected.
The main result is now

Theorem 8.11. Let X be a complex algebraic variety with base point x 2 X.
Then the following holds.

1) For each s � 0, the finitely generated Z-module Z⇡1(X, x)/Js+1 has a nat-
ural mixed Hodge structure, functorial with respect to base point preserving
morphisms of varieties. Moreover, the product in this ring is a morphism
of mixed Hodge structures;
2) In case X is simply connected, the higher homotopy groups ⇡k(X,x) carry
natural mixed Hodge structures functorial with respect to morphisms of sim-
ply connected varieties and independent of base points. The Whitehead prod-
ucts are morphisms of mixed Hodge structure.
3) In case X is simply connected, the Hurewicz maps Hk(X) ! ⇡k(X) are
morphisms of mixed Hodge structure.

Remark 8.12. The hypothesis that (X, x) be simply connected is too restric-
tive. In order to have a mixed Hodge structure on the higher homotopy groups
of a complex variety (X,x), it is su�cient that (X, x) be nilpotent in the
sense that ⇡1(X,x) is nilpotent and, moreover, the natural action of ⇡1(X, x)
on ⇡k(X,x) ⌦ Q is unipotent for each k � 2. Examples include path con-
nected H-spaces, since by [Span, Chap. 7, Thm. 10], such a space has an
abelian fundamental group with trivial action on higher homotopy groups.

There are some further results which complete the assertions of the pre-
ceding theorem. For this we need to pass to rational coe�cients. First of all,
the filtration of the group-ring Q⇡1(X,x) by powers of its augmentation ideal
J defines an inverse system

{Q⇡1(X, x)/Js+1 | s = 0, 1, 2, . . .}

whose limit is the J-adic completion

\Q⇡1(X, x) := lim
 

Q⇡1(X,x)/Js+1.

This Q vector space is in general not finite dimensional and we need to modify
the definition of a mixed Hodge structure as follows.

Definition 8.13. Let V = lim
 

Vk where each Vk is a finite dimensional Q-
vector space. A pro-mixed Hodge structure on V consists of mixed Hodge
structures on each Vk such that the linear maps V` ! Vk, ` > k are morphisms
of mixed Hodge structures.

Similarly one defines the notion of an ind-mixed Hodge structure on
V = lim

!
Vk.

With this in mind, we have
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Complement (I). The mixed Hodge structures of Theorem 8.11 1) induces
a pro-mixed Hodge structure on \Q⇡1(X,x). The product map for this algebra
is a morphism of mixed Hodge structures. With the standard pro-mixed Hodge
structure on the tensor product \Q⇡1(X, x) ⌦Q

\Q⇡1(X,x), also the diagonal
map sending g 2 \Q⇡1(X,x) to g⌦g is a morphism of mixed Hodge structures.

It is also natural to consider the maps in the long exact sequence of a
Hurewicz fibration:

Complement (II). The homotopy exact sequence (VIII–3) for a Hurewicz
fibration p : E ! B of complex algebraic varieties is a sequence of mixed
Hodge structures if the fibre F and the base B are simply connected (this
implies that the total space E is simply connected), or more generally, if E,
B are simply connected and F is nilpotent (see Remark 8.12).

Example 8.14. As an application, we look at the Hopf fibration C
n+1�{0}!

P
n with fibre C

⇤. Since complex projective space is simply connected, when
we apply the homotopy exact sequence to the Hopf fibration, it shows that
⇡2(Pn) is cyclic with one generator, while for m � 3 we have ⇡m(Pn) ⇠=
⇡m(S2n+1). By [Span, Chap. 9, § 7] these groups are torsion, except the infinite
cyclic group ⇡2n+1(S2n+1). So for Hodge theory, only this group and ⇡2(Pn)
are interesting and they must have a pure Hodge structure. The coboundary
⇡2(Pn) ! ⇡1(C⇤) is an isomorphism of mixed Hodge structures and so the
natural mixed Hodge structure on the latter is pure of type (�1,�1) as well.
As for the Hodge structure on ⇡2n+1(Pn) ⇠= ⇡2n+1(Cn+1 � 0), let us look the
Hurewicz homomorphism

⇡2n+1(Cn+1 � 0)! H2n+1(Cn+1 � 0) ⇠= Z.

Since by loc. cit. the `-th homotopy group of the k-sphere is trivial for ` < k,
by Theorem 8.1 this is an isomorphism. The group on the right admits a
mixed Hodge structure which can be calculated by identifying C

n+1�0 as the
complement of the exceptional divisor together with the hyperplane at infinity
inside the blow up of P

n+1 in a point outside the hyperplane at infinity. The
Gysin sequence (Prop 1.19) shows that H2n+1(Cn+1 � 0) = Z(n + 1). So this
gives the Hodge structure on ⇡2n+1(Cn+1 � 0).

For the relative situation there is the useful

Complement (III). Let f : (X, x)! (Y, y) be a morphism of complex alge-
braic varieties. Suppose that Y is (path) connected and that the monodromy
action of ⇡1(Y, y) on the each cohomology group of the homotopy fibre Ef (y)
of f is unipotent. Then these cohomology groups Hk(Ef (y)) carry natural
mixed Hodge structures; if moreover the homotopy fibre is simply connected
or, more generally nilpotent, the higher homotopy groups ⇡k(Ef (Y )) of the
homotopy fibre also carry natural mixed Hodge structures. The monodromy
representation of the group algebra Q⇡1(Y, y) on the cohomology H⇤(Ef (y))
of the homotopy fibre is a representation of mixed Hodge structures.
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Remark. The monodromy hypothesis is rarely satisfied when we have a fam-
ily of smooth algebraic varieties since the monodromy acts semi-simply (see
10.13). But the preceding result can also be used if Y is simply connected,
even when f is not a fibre bundle. For Y a punctured disk Hain has shown
that there is a “limit” mixed Hodge structure on the cohomology (respectively
homotopy) of the homotopy fibre. See [Hain86].

8.3 Loop Space Cohomology and the Homotopy De

Rham Theorem

8.3.1 Iterated Integrals

Motivated by the isomorphism from the Borel-Serre theorem (Corollary 8.6)
it is natural to ask for a De Rham theorem for the cohomology of path spaces.
The basic idea is that, although loop spaces in general are infinite dimensional,
one can still define di↵erential forms on them, do integration and derive an
analogue of De Rham’s theorem using so called plots instead of coordinate
charts.

Definition 8.15. – A plot into a set Y is a map of an open convex subset
of R

n into Y (n is arbitrary);
– A di↵erentiable space is a set Y together with a collection of plots into

Y such that the following properties hold:
i) Compatibility: for any plot p : U ! Y and any smooth map f : U 0 ! U ,

U 0 ⇢ R
m, convex, also p�f is a plot;

ii) Constant maps from open convex subsets in R
n are plots;

iii) Glueing: a map from an open convex set U ⇢ R
n to Y is a plot as soon as

U can be covered by plots.

Standard examples of such di↵erentiable spaces are finite dimensional dif-
ferentiable manifolds, as well as their path spaces. In the first case the plots
are the usual di↵erentiable maps of open convex subspaces in R

n to Y . In the
last case, we observe first that any map f : U ! PY induces a suspension
Sf : I⇥U ! Y , upon setting Sf(t, u) = f(u)(t) (one views f(u) as an actual
path in Y ). Then for U ⇢ R

n, we declare f : U ! PY to be a plot if its
suspension is.

Definition 8.16. A di↵erential form ! on a di↵erentiable space Y is given by
a di↵erential form !p on U for each plot p : U ! Y . These should satisfy the
compatibility rule that for any smooth map f : U 0 ! U , U 0 ⇢ R

m convex,
the di↵erential form !p�f on the plot p�f coincides with f⇤!p.

One can then add, multiply and di↵erentiate di↵erential forms plot-wise,
defining a De Rham complex on Y denoted EDR(Y ). If Y is a smooth manifold
this contains and is quasi-isomorphic to the usual De Rham complex, and
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hence computes cohomology of Y . This is no longer true however in general.
For path spaces PX of simply connected di↵erentiable manifolds X with finite
dimensional De Rham cohomology Chen has shown that the cohomology of
Y = PX is the cohomology of a certain subcomplex of the De Rham complex
EDR(Y ), the complex of iterated integrals.

To define an iterated integral, we first look at the behaviour of an r-form
! on X when pulled back under the suspension S(p) : I ⇥ U ! X of a plot
p : U ! PX. One has a canonical decomposition

S(p)⇤! = �(t, u) + dt ^ �(t, u), (t, u) 2 I ⇥ U,

where � and � contain no dt.

Definition 8.17. Let there be given an ordered collection of di↵erential forms
!i of degree ki � 1, i = 1, . . . , s on X. The associated elementary iterated
integral Z

!1!2 · · ·!s 2 E`

DR
(PX), ` =

sX

i=1

(ki � 1)

is the `-form which on the plot p : U ! PX is given by
Z
· · ·

Z

0t1···ts1

�1(t1, u) ^ �2(t2, u) · · · ^ �s(ts, u)dt1dt2 . . . dts,

where S(p)⇤!i = �i(t, u) + dt^ �i(t, u) is the canonical decomposition consid-
ered previously. An iterated integral on X is a di↵erential form on its path
space P (X) which is a (finite) linear combination of a constant and elementary
iterated integrals. Notation:

Z
EDR(X) ⇢ EDR(PX).

Since an iterated integral is a di↵erential form on path space, it has an deriva-
tive. To calculate it we introduce the involution

J : EDR(X)! EDR(X), J! = (�1)p!, ! a p form on X

and then (see [Chen76, §2.1])

d
R
!1 · · ·!s = d0

R
!1 · · ·!s + d00

R
!1 · · ·!s

d0
R
!1 · · ·!s =

P
s

i=1

R
(�1)i+1J!1 · · · J!i�1(J!i ^ !i+1)!i+2 · · ·!s

d00
R
!1 · · ·!s =

P
s

i=1

R
(�1)iJ!1 · · · J!i�1d!i!i+1 · · ·!s.

So the iterated integrals form a subcomplex of the De Rham complex of PX.
The following properties are easily verified using the definitions.
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Lemma 8.18. a) (Functoriality) If f : X ! Y is a smooth map be-
tween di↵erentiable manifolds, one defines the pull back of an iterated
integral

Z
f⇤(!1!2 · · ·!s) :=

Z
f⇤!1f

⇤(!2) · · · f⇤(!s) 2 EDR(PX)

and for 1-forms !i, i = 1, . . . , s we have
Z

f��

!1!2 · · ·!s =
Z

�

f⇤(!1!2 · · ·!s), � 2 PX.

b) The following relations hold when we restrict iterated integrals to
PxX:

R
�

dh!1!2 · · ·!s =
R
�
(h!1)!2 · · ·!s � h(x)

R
�
!1 · · ·!s;R

�
!1 · · ·!i�1dh!i · · ·!s =

R
�
!1 · · ·!i�1(h!i)!i+1 · · ·!s

�
R
�
!1 · · · (h!i�1)!i · · ·!s;R

�
!1 · · ·!sdh = h(x)

R
�
!1 · · ·!s �

R
�
!1 · · ·!s�1(h!s).

8.3.2 Chen’s Version of the De Rham Theorem

Chen’s homotopy De Rham theorem states that the cohomology of the sub-
complex given by iterated integrals already computes H⇤

DR
(PX). We need a

slightly more general version using the parlance of di↵erential graded algebras.
We recall the definition:

Definition 8.19. Let k be a field. A graded k- algebra A =
L

p�0
Ap is a

di↵erential graded algebra if there is a k-derivation d : A ! A, dAp ⇢
Ap+1, i.e. d is k-linear and satisfies the Leibniz-rule d(xy) = (dx)y+(�1)pxdy,
x 2 Ap, y 2 Aq. Moreover, one should have d�d = 0. If in addition A is a Hopf
algebra (see Def. 8.8) and the co-multiplication is a morphism of di↵erential
graded algebras we say that A is a di↵erential graded Hopf algebra. If A
is a di↵erential graded algebra with A0 = k, we say that A is connected.

The standard example of a commutative di↵erential graded algebra with
connected cohomology is the De Rham-algebra of k-valued di↵erential forms
on a path connected di↵erentiable manifold X, where k is a subfield of C:

EDR(X; k): the di↵erential graded algebra of k-valued di↵erential
forms on X.

If A is a di↵erential graded subalgebra of EDR(X; k), we set

R
A(X,x): the subalgebra of EDR(PxX; k) formed by the iterated

path integrals of forms on X belonging to A ⇢ EDR(X; k).



202 8 Hodge Theory and Iterated Integrals

With these notations, we can now formulate Chen’s De Rham theorem in
the simply connected case [Chen76, §2.3]:

Theorem 8.20 (Chen’s Homotopy De Rham Theorem). Let X be a
connected and simply connected manifold, all of whose rational cohomology
groups are finite dimensional. Let A be a di↵erential graded subalgebra of the
algebra of di↵erential forms with the property that the inclusion in the full De
Rham algebra is a quasi-isomorphism. Then the cohomology of the complexR

A(X,x) computes the cohomology of the loop space PxX with coe�cients k.

8.3.3 The Bar Construction

The formulas for the derivative of an iterated integral and the formulas from
Lemma 8.18 motivate the bar and the reduced bar construction on the De
Rham algebra. For simplicity of notation, we take k = R so that we only treat
the real De Rham algebra. First note that the choice of a base point x 2 X
defines an augmentation EDR(X)! R.

The bar construction makes in fact sense for any augmented di↵erential
graded algebra (A, ✏) with augmentation ideal IA = Ker ✏ as we explain now.
We first introduce

B�s,tA = degree t elements inside
sO

IA.

Traditionally one denotes the element !1⌦ · · ·⌦!s of B�s,tA by [!1| . . . |!s].
We make B�•,•A into a double complex by setting

d0 : B�s,tA��! B�s+1,tA,

[!1| · · · |!s] 7!
sX

i=1

(�1)i+1[J!1| · · · |J!i�1|J!i ^ !i+1|!i+2| · · · |!s]

d00 : B�s,tA��! B�s,t+1A,

[!1| · · · |!s] 7!
sX

i=1

(�1)i[J!1| · · · |J!i�1|d!i|!i+1| · · · |!s].

The bar construction BA of A is the associated single complex. It has extra
structure. There always is the co-product

� : BA ! BA⌦BA
[!1| · · · |!r] 7!

P
r

i=0
[!1| · · · |!i]⌦ [!i+1| · · · |!r].

and the product

BA⌦BA
^�! BA

[!1| · · · |!r]⌦ [!i+1| · · · |!r+s] 7!
P
�

sign(�)[!�(1)| · · · |!�(r+s)]
,

where � runs over all shu✏es of type (r, s) and the sign of such a shu✏e
is determined by giving !i the weight �1 + deg(!i). Let us recall that a
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shu✏e � of type (r, s) is a permutation of {1, . . . , n = r + s} such that
��1(1) < · · · < ��1(r) and ��1(r + 1) < · · · < ��1(r + s). In general these
two structures don’t give a di↵erential graded Hopf algebra, except when the
algebra A• is graded commutative. We leave this verification to the reader.

Returning to the De Rham complex, the structure of its bar complex
depends on the chosen base point x 2 X and we therefore use the notation
BEDR(X,x) in this case. We can now explain the degree convention. The map
[!1| . . . |!s] 7!

R
!1 · · ·!s maps an element in the bar construction of the De

Rham complex to a di↵erential form of degree
P

s

i=1
deg!i�s and so the total

degree on the bar complex coincides with this degree. In fact, the definitions
are such that the following statement becomes a tautology:

Lemma 8.21. Iterated integration induces a map of di↵erential graded alge-
bras

BEDR(X, x)! EDR(PxX).

The three relations from Lemma 8.18 motivate the construction of a sub-
complex of the bar construction which can be defined for any augmented
di↵erential graded algebra. Indeed, we look at the subspace of BA generated
by elements of the form

8
>><

>>:

[dh|!1| · · · |!s]� [h!1|!2| · · · |!s] + ✏(h)[!1| · · · |!s]
[!1| · · · |!s|dh]� ✏(h)[!1| · · · |!s] + [!1| · · · |h!s],
[!1| · · · |!i�1dh|!i| · · · |!s]� [!1| · · · |!i�1|h!i| · · · |!s]

+[!1| · · · |h!i�1|!i| · · · |!s]

(VIII–4)

where h 2 A0. The quotient by this subcomplex is called the reduced bar
construction B̄A. The equivalence class of [!1| · · · |!r] in the reduced bar
construction is traditionally denoted (!1| · · · |!r).

Remark 8.22. For later use we need a slight generalization of this construction
for a (not necessarily commutative) di↵erential graded algebra A which is zero
in degrees < 0. It involves also a right A-module M and a left A-module N .
Instead of IA (which does not make sense since there is no augmentation),
we use the positive degree part A+ and we introduce

T�s,t(M, A, N) :=degree t elements of [M ⌦⌦sA+ ⌦N ].

The previous B�s,t is the special case where M = N = k, considered A-
modules through the augmentation ✏ : A ! k. This motivates the notation
m[a1| · · · |as]n for the element m⌦ a1 ⌦ · · ·⌦ as ⌦ n in T�s,t(M,A, N).

Note that the formulas (VIII–4) make sense in this setting, viewing h 2 A0

as acting from the right on m 2M and from the left on n 2 N :
8
>><

>>:

m[dh|a1| · · · |as]n�m[ha1|a2| · · · |as]n + mh[a1| · · · |as]n
m[a1| · · · |as|dh]n�m[a1| · · · |as]hn + m[a1| · · · |has]n,
m[a1| · · · |ai�1dh|ai| · · · |as]n�m[a1| · · · |ai�1|hai| · · · |as]n

+m[a1| · · · |hai�1|ai| · · · |as]n
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These relations generate a subcomplex and the quotient is the reduced bar
construction B̄(M,A, N). The equivalence class of m[a1| · · · |as]n is com-
monly denoted by m(a1| · · · |as)n. It is a di↵erential graded algebra with prod-
uct denoted ^ coming from the shu✏e product.

As an example consider the path space Px,yX of paths from x to y. There
are two augmentations ✏x, ✏y : EDR ! R and we can have two structures
on R as a EDR(X) module, denoted Rx, respectively Ry. The corresponding
reduced bar is B̄(Rx, EDR, Ry). Chen’s theorem actually is more elaborate
and also states that the cohomology of this complex computes H⇤(Px,y; R).
We shall see later (§ 8.6) that there is a rational di↵erential graded algebra
AQ with augmentations AQ ! Q depending on the base point such that the
reduced bar complex computes H⇤(Px,y; Q). So for k = R or k = Q we thus
have the complexes B̄(kx,AQ, ky) computing H⇤(Px,yX; k).

Coming back to the reduced bar construction for the De Rham complex, note
that it is inspired by the relations for the iterated integrals. So by construction,
the integration map factors over B̄EDR(X,x). In fact (see [Chen77]) we have:

Theorem 8.23. Let X be a simply connected manifold all whose homotopy
groups are finitely generated. If A is a subcomplex of the De Rham complex
such that its inclusion into the full De Rham complex is a quasi-isomorphism,
then the di↵erential graded algebra morphisms

BA! B̄A!
Z

A(X, x) ,!
Z

EDR(X, x)

are all quasi-isomorphisms. Moreover, the resulting isomorphism between the
cohomology algebras

H⇤BA
⇠�! H⇤(PxX; R)

is a Hopf algebra isomorphism.

8.3.4 Iterated Integrals of 1-Forms

To define the associated iterated integral of 1-forms, we need no plots, since the
corresponding di↵erential form on PX now has degree 0. So, given an ordered
set of s k-valued one-forms !1,!2, . . . ,!s, the associated iterated integral is
the function Z

!1!2 · · ·!s : PX ! k

given by the formula
Z

�

!1!2 · · ·!s =
Z
· · ·

Z

0t1···ts

f1(t1)f2(t2) · · · fs(ts)dt1 · · · dts,

where � is any path and
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�⇤!i = fi(t)dt.

An integrated integral of length s is a k-linear combination of a constant
and iterated integrals associated to at most s one-forms.

Continuing with the case of 1-forms, let us remark that a function f :
PX ! k has di↵erential zero if and only if the composite f�p : U ! k is
constant for any plot p : U ! PX, i.e. f is constant on path components
of PX. Loops based at x in the same homotopy class form a single path
component and so

R
!1!2 · · ·!s : PxX ! k belongs to H0(EDR(PX)) if

and only if the value of this iterated integral is constant on loops that are
homotopic. If s = 1 this is equivalent to d!1 = 0 which motivates the following
definition.

Definition 8.24. An iterated integral of 1-forms on loop space PxX is closed
or a homotopy functional if its value does not change under homotopies
preserving the base point x.

8.4 The Homotopy De Rham Theorem for the

Fundamental Group

The fundamental group can also be studied using iterated integrals of one-
forms. First we need a relation with a ordinary integrals. To formulate it, let us
observe that closed R-valued iterated integrals on PxX can also be extended
to functions on the group ring

R⇡1(X, x)! R

(and similarly if we replace R by C). The following relation plays a central
role in the sequel.

Lemma 8.25. Let a = (↵1 � 1)(↵2 � 1) · · · (↵r � 1). Then
Z

a

!1 · · ·!s =
⇢

0 if r > sR
↵r
!r · · ·

R
↵1

!1 if r = s.

Proof. Define the simplex �(Ir) = {(t1, . . . , tr) 2 Ir | 0  t1  · · ·  tr  1}
and divide the unit interval into r equal subintervals Ik = [k�1

r
, k

r
]. Let ↵i,

i = 1, . . . , r be closed paths based at x and write

� = ↵1 ⇤ · · · ⇤ ↵r

ak = (↵1 � 1) · · · (↵k � 1)↵k+1 · · ·↵r, k = 1 . . . , r
�⇤!k = fk(t)dt, k = 1 . . . , s.

By induction one shows
Z

ak

!1 · · ·!s =
X Z

Ii1⇥···Iis\�(Is)

f1(t1) · · · fs(ts)dt1 · · · dts,
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where the sum is taken over all choices of non-decreasing s-tuples of integers
(i1, . . . , is) containing the set {1, . . . , k}. For k > s the sum is zero and for
k = s = r there is only one summand. Fubini completes the proof. ut

We can now formulate the sought for De Rham theorem for the funda-
mental group.

Theorem 8.26. Let A be a di↵erential graded subalgebra of the De Rham
algebra EDR(X) of a manifold X. Consider closed iterated integrals which are
homotopy functionals and the tautological integration homomorphism

H0(
R

A(X, x)) �! H0(PxX; R)����

����
{closed iterated integrals} �! HomZ(Z⇡1(X, x), R)R

!1 · · ·!s 7�! {[�] 7!
R
�
!1 · · ·!s}.

Suppose that the inclusion of A into the De Rham complex induces an isomor-
phism on H1 and an injection on H2. Suppose also that ⇡1(X, x) is finitely
generated. Recalling that J is the augmentation ideal, any closed iterated in-
tegral of length s vanishes on elements in Jr when r > s. Integration induces
therefore a homomorphism

⇢
closed iterated integrals

of length  s.

�
�! HomZ(Z⇡1(X,x)/Js+1, R).

This is an isomorphism.

Proof (sketch). The first assertion is Lemma 8.25.
For the second assertion we first make some observations. The crucial

remark is the fact, that the transport matrix of a flat connection does not
change under homotopies preserving the endpoints. See Lemma B.42. Let us
briefly recall the construction. Suppose that we have a piece-wise smooth path
� : I ! X and a fixed (n⇥ n)-matrix ! of smooth 1-forms. We consider this
matrix as a connection matrix of a connection r on the trivial bundle R

n⇥X.
Recall (Lemma-Def. B.41) that parallel transport along the path � is given
by the transport map

w = v T (�),

where T (�) is the following (convergent) series of iterated integrals evaluated
on �

T (�) = 1 +
Z

�

! +
Z

�

!! +
Z

�

!!! + · · ·

The iterated integrals appearing in this series in fact are matrix-valued
functionals instead of just real or complex valued. For flat connections
the transport map does not depend on homotopies preserving endpoints
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(Lemma B.42). So in this case the entries of the transport matrix are ho-
motopy functionals.

We can now prove the second assertion. We try to find iterated integrals as
coe�cients in an upper triangular connection matrix of a flat connection on a
trivial bundle V ⇥X. To get the right number of such, we carry this out for the
finite dimensional real vector space V = R⇡1(X,x)/Js+1. A representation of
the fundamental group in a vector space V defines a vector bundle with a
flat connection on it as explained in Example B.40. Here right multiplication
defines an action of the fundamental group G = ⇡1(X, x) on V . The resulting
representation ⇢ has the property that (⇢([↵]) � I)s+1 = 0. This is because
GJ i ⇢ J i+1 and so preserves the filtration

V = V 0 = J0/Js+1 � V 1 = J1/Js+1 � · · ·V s = Js/Js+1 � 0,

the induced action on the graded quotients being trivial.
Now, as in § B.3, let us form the associated flat bundle

E = (V ⇥ universal cover of X)/G, (v, x) · g = (vg, g�1x).

The subspaces V i define flat subbundles Ei and we can easily find a smooth
trivialization of E which trivializes at the same time all the subbundles Ei as
bundles together with the flat connection. This implies that the connection
form of the flat connection on E takes its values in the the Lie-algebra g of
endomorphisms of V that preserve the flag V = V 0 � V 1 · · · � V s � 0.
Its connection form ! is a g-valued 1-form. So for any smooth path � in X,
setting �⇤! = A(t)dt, we have the desired nilpotency A(t)s+1 = 0 and hence
the entries of A consist indeed of iterated integrals of length  s. Also, since
the connection is flat, the value T (�) depends only on the homotopy class of �.
If we let W be the space of iterated integrals which are homotopy functionals,
the transport matrices therefore give an element

T 2W ⌦ End(V ).

The monodromy of the local system E is a homomorphism

R⇡1(X, x)! End(V ),

which by construction factors over V = R⇡1(X, x)/Js+1 and induces the
canonical injection

R⇡1(X,x)/Js+1 = V ,! End(V ), g 7! Ag = (v 7! v · g).

So T in fact takes values in W ⌦V . Now, quite formally, integration induces a
map f : W ! V _, while T viewed as an element in W⌦V defines g : V _ !W
by contraction. The map f�g is dual to the map V ! V induced by integration
� 7!

R
�

T , and it is the identity by construction. From f�g = id we derive that
the integration map f must be surjective. Since it is obviously injective on
iterated integrals that are homotopy functionals, this completes the proof. ut
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Remark 8.27. The theorem implies that the space of closed iterated integrals
is dual to the J-adic completion \R⇡(X, x) of the the group ring of the funda-
mental group (over R) with respect to the augmentation ideal J .

8.5 Mixed Hodge Structure on the Fundamental Group

The main result is:

Theorem 8.28. Let X be a smooth complex projective algebraic variety and
x 2 X. Then, for each s � 0, the finitely generated Z-module Z⇡1(X, x)/Js+1

has a natural mixed Hodge structure.

Remark. The general case of complex algebraic varieties can be treated using
the machinery of cohomological descent for simplicial varieties. For the latter
we refer to [Hain87].

Proof (of theorem 8.28 – sketch only). The point of departure is the de
Rham Theorem 8.26. For brevity, introduce the notation Bs(X, x) for the
the real vector space of iterated integrals over 1-forms and of length  s and
H0Bs(X,x) for the closed iterated integrals of length  s.1

We put a weight filtration on the spaces of iterated integrals by setting

WkBs(X, x) =
⇢

Bk(X, x) if k  s
Bs(X,x) if k � s.

The di�culty is to show that it is defined over the rationals. This we do later.
A Hodge filtration is defined starting with the usual Hodge filtration com-

ing from the type decomposition of complex one forms, where a form is in F 1

if it is of pure type (1, 0) and in F 0 otherwise. Explicitly, F p is spanned as
a complex vector space by the complex-valued iterated integrals over forms
!1 · · ·!s, !j 2 F pj with

P
pj � p.

We need to show that the weight and Hodge filtration define a mixed
Hodge structure. To start with, we make the following

Observation 8.29. There is a natural isomorphism

R�H1

DR
(V )! H0(B1(X), x)

(c, [!]) 7! c +
R
!.

To see this, note that the integral of a one form ! depends on homotopy
classes of the paths if and only if ! is closed and it evaluates to zero on closed
paths whenever ! is exact.

We now compare closed iterated integrals of length s with elements inside
⌦sH1

DR
(X):

1
Bs(X, x) is the image of B

�s,s
EDR(X, x) under the integration map and

H
0
Bs(X, x) is the image of the d-closed forms in B

�s,s
EDR(X, x).
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Proposition 8.30. 1) The leading term of an iterated integral

X

|J|=s

aJ

Z
!j1

· · ·!js + iterated integrals of smaller length (VIII–5)

defines an element in
N

s E1(X)/dE0(X), and hence a homomorphism

p : Bs(X, x)!
sO

E1(X)/dE0(X).

2) The homomorphism p is zero on iterated integrals of lower lengths and
when restricted to homotopy functionals it induces a homomorphism

p̄ : H0(Bs(X, x))!
sO

H1

DR
(X)

with kernel H0Bs�1(X,x). Hence we have an exact sequence

0! H0Bs�1(X,x)! H0Bs(X, x)
p̄

�!
sO

H1

DR
(X). (VIII–6)

Proof. 1) By Lemma 8.25, the value of the leading term on (↵1�1) · · · (↵s�1)
is equal to

R
↵s
!s · · ·

R
↵1

!1. This evaluates to zero for all choices of closed paths
↵1, . . . ,↵s if and only if at least one of the !i is exact as we shall now verify
by induction. For s = 1 the function f(y) :=

P
aj1

R
y

x
!j1

is well defined and
df =

P
aj1
!j1

.
Now assume that s > 1 and choose a basis [✓i] for the finite dimensional

subspace of E1(X)/dE0(X) generated by the !jk that appear in the leading
term of (VIII–5) and write

P
|J|=s

aJ [!j1
]⌦ · · ·⌦ [!jr ] =

P
|J|=s

AJ [✓j1
]⌦ · · ·⌦ [✓js ]

=
P

i
[✓i]⌦

P
AJ [✓j2

]⌦ · · ·⌦ [✓js ].

Consider now for each (s� 1)-tuple of closed paths the 1-form modulo di↵er-
entials

[✓] =
X

i

[✓i]⌦
X

AJ

Z

↵2

✓j2
· · ·

Z

↵s

✓js .

By assumption [✓] evaluates to zero over any closed path and hence must be
zero. But the [✓i] form a basis for the space we are working in and hence
all coe�cients must be zero. By the induction hypothesis the corresponding
multiform must be zero and hence also the multiform we started with must
vanish.

This completes the proof of 1); in particular we dispose of a well defined
homomorphism

p : Bs(X, x)!
sO

E1(X)/dE0(X).
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2) Since any iterated integral of length  s � 1 evaluates to zero on a =
(↵1�1) · · · (↵s�1) (apply Lemma 8.18 again), it follows that p is zero on the
subspace Bs�1(X,x).

Let us restrict p to closed integrals. Observe that for a homotopy func-
tional

R
!j1

· · ·!js the value over a = (↵s � 1) · · · (↵1 � 1) does not change
when we deform the loops ↵j , keeping endpoints fixed. Hence the productR
↵s
!s · · ·

R
↵1

!1 does not change under such deformations. By Stokes’ theo-
rem, if the !jk are not exact, there are loops ↵k, k 6= i such that

R
↵k
!jk 6= 0.

So
R
↵i
!ji =

R
a
!j1

· · ·!js/
Q

k 6=i

R
↵k
!jk then does not depend on the homo-

topy class of the loop ↵i and so !ji is closed. So p maps closed integrals to
closed forms. Let us determine those integrals that map to an exact form
under p, that is

p(I) = d
⇣X

bk1,...,ks�1
⌘k1
⌦ · · ·⌦ ⌘ki�1

⌦ fki ⌦ ⌘ki+1
⌦ · · ·⌦ ⌘ks�1

⌘

where the ⌘j are 1-forms and fj is a function. If we now evaluate I, since the
⌘j are closed, we only have iterated integrals of the form

Z ⇣X
bk1,...,ks�1

⌘k1
⌦ · · ·⌦ ⌘ki�1

⌦ dfki ⌦ ⌘ki+1
⌦ · · ·⌦ ⌘ks�1

⌘
.

These can be reduced to iterated integrals of smaller length using the previ-
ously established formulas from Lemma 8.18.

Since, as we have seen, p maps iterated integrals of length  s� 1 to zero
this proves (VIII–6) . ut

Corollary 8.31. The weight filtration is defined over Q.

Proof. This is obviously true for s = 1 and for the induction we use that the
image of p̄ is defined over Q, since it is the kernel of the map
P

s�1

i=1
ci : ⌦sH1(X)!

P
i+j=s�2

⌦iH1(X)⌦H2(X)⌦⌦jH1(X)
ci(z1 ⌦ · · ·⌦ zs) = z1 ⌦ · · ·⌦ zi ⌦ (zi ^ zi+1)⌦ zi+2 ⌦ · · ·⌦ zs. ut

Completion of the proof of Theorem 8.28. The Hodge filtration induces the
correct Hodge filtration on the subspace inside

N
s H1(X; C). To complete

the proof we recall (Criterion 3.10) that two filtrations on a rational vector
space induce the structure of a rational mixed Hodge structure, if it is the
middle term of an exact sequence of rational bi-filtered vector spaces whose
morphisms strictly preserve the filtrations, and which moreover induce the
structure of a rational mixed Hodge structure on the two extremes of the
exact sequence.

This finishes the sketch of the proof that Z⇡1(X,x)/Js+1 carries a mixed
Hodge structure. From the preceding construction it should be clear that it is
functorial. ut
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The space H0(
R

A(X,x)) of closed iterated integrals is a direct limit of the
spaces H0(Bs(X,x)) of length  s closed iterated integrals. Moreover, these
spaces define the weight spaces on H0(

R
A(X, x)). By Remark 8.27 this real

space is the R-dual of lim
 

Z⇡1(X, x)/Js+1 and hence recalling Definition 8.13
we have:

Corollary 8.32. There is a pro-mixed Hodge structure on \Q⇡1(X,x) compat-
ible with the mixed Q-Hodge structure on each of the Q⇡1(X,x)/Js+1 from
Theorem 8.28.

Remark 8.33. The mixed Hodge structure depends on base points and in cer-
tain cases this can be understood geometrically through a Torelli type theorem
as shown by Hain [Hain87b] and Pulte [Pul]:
Let (X,x) and (Y, y) be two pointed compact Riemann surfaces. Suppose that
there is a ring isomorphism

' : Z⇡1(X,x)/J(X, x)3 ! Z⇡1(Y, y)/J(Y, y)3

inducing an isomorphism of mixed Hodge structures. Then there is an isomor-
phism f : X ! Y with f(x) = y with the possible exception of two points x
on X

8.6 The Sullivan Construction

As explained in the introduction to this chapter, we need a graded commuta-
tive product structure on a rationally defined algebra computing the cohomol-
ogy. Such an algebra has been found by Sullivan in [Sull] using the complex
of rational polynomial forms. Let us briefly explain how this works. Let us
first look at a simplicial complex K (§ B.1). Consider a collection of p-forms
whose coe�cients with respect to barycentric coordinates are polynomials
with rational coe�cients, one on each simplex of K with the obvious demand
on compatibility that the form associated to a simplex in the boundary of a
given simplex is the restriction of the form on the entire simplex. Such col-
lections form a Q-vector space Ap(K) and di↵erentiation and wedge product
on each simplex defines the structure of a rational di↵erential graded alge-
bra A(K) =

L
p
Ap(K). The integration map is a map of cochain complexes

A(K)! C•(K; Q), where the right hand side is the complex of Q-valued sim-
plicial cochains. It induces an algebra isomorphism H⇤A(K) ⇠�! H⇤(K; Q).
One shows that this is compatible with subdivisions and so, if X is triangu-
lable, this construction solves our problem.

One can generalize this to arbitrary topological spaces X by using the sim-
plicial set S•(X) whose p-simplices are the singular p-simplices � : �p ! X
introduced in Example 5.2.1. Each non decreasing map f : [q] ! [p] has as
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its geometric realisation an a�ne map |f | : �q ! �p and hence there are
induced maps |f |⇤ : A(�p)! A(�q) on forms with Q-polynomial coe�cients.
To construct A(S• X) we take a sequence of Q-polynomial forms !� indexed by
singular simplices �, where !� is a form on the associated simplex �p. These
sequences (!�) should satisfy the compatibility relations |f |⇤!� = !f(�) for all
non-decreasing maps f , as explained before. For X a di↵erentiable manifold
one can instead use the simplicial set S1• of smooth singular simplices and
rational polynomial forms on them:

Definition 8.34. Let X be a di↵erentiable manifold. The Sullivan algebra
or Sullivan De Rham-complex A(X)Q is the di↵erential graded algebra

A(X)Q :=A(S1• X).

The basic result now is (see [Halp, 15.19]):

Theorem 8.35. Let X be di↵erentiable manifold and let A(X)Q be the Sul-
livan De Rham complex of rational polynomial forms on the simplicial set of
smooth singular simplices and let A1(X) be the complex of smooth forms on
the same simplicial set. Then

1) The inclusion A(X)Q ⌦ R ,! A1(X) is a quasi-isomorphism;
2) the natural map EDR ! A1(X), which results from pulling back a global
form via a smooth singular simplex, is a quasi-isomorphism;
3) the integration map (sending the De Rham complex, Sullivan’s complex
and the complex A1(X) to singular cohomology) induces the usual De Rham
isomorphism

H⇤
DR

(X) ⇠�! H⇤(A1(X)).

4) For any Q-algebra k, using k-valued forms this generalizes to

H⇤
DR

(X; k) ⇠�! H⇤(A1(X); k) ⇠ � H⇤(A(X)Q ⌦Q k) ⇠�! H⇤(X; k).

The bar construction is algebraic in nature. Moreover, as can easily be
seen [Hain87, 1.1.1], a quasi-isomorphism A• ! A0• between two augmented
di↵erential graded algebras A•, A0• over a field k with H0(A•) ⇠= H0(A0•) ⇠= k
a induces a quasi-isomorphism BA• ! BA0• between the two bar construc-
tions. We deduce:

Corollary 8.36. Let X be a simply connected smooth manifold. Let k be a Q-
algebra and let A• be an augmented commutative k-di↵erential graded algebra
together with a quasi-isomorphism

f : A• ! A(X)Q ⌦Q k,

from A• to the Sullivan-algebra of X. Then f induces an isomorphism of
k-Hopf algebras

H⇤(BA•)! H⇤(PxX; k).
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Remark 8.37. There is a logarithmic version of this construction for the coho-
mology of a smooth but not necessarily compact algebraic variety U . Recall
(§ 4.1) that the weight filtration comes from a weight filtration on a sub-
complex of the complexified De Rham complex, the complex of forms with
logarithmic poles. To have the weight filtration over Q we have shown (4.3)
that this filtered complex is quasi-isomorphic to the Godement resolution of
the constant sheaf with its canonical filtration. We would like to replace the
complex of logarithmic forms with its weight filtration by a quasi-isomorphic
filtered di↵erential graded algebra which is already defined over the rationals.
Unfortunately, the canonical filtration ⌧ on the Sullivan complex AQ(U) leads
to sheaves that are not fine. To be precise, write U = X �D, with X smooth
and D a strict normal crossing divisor. The complex of sheaves (j⇤AQ, ⌧) as-
sociated to the filtered presheaf V 7! (AQ(U \ V ), ⌧) are no longer fine. But
there is a Čech-ist approach developed by Hain [Hain87, 5.6] which solves this
problem and extends the above approach to the non-compact smooth setting.

8.7 Mixed Hodge Structures on the Higher Homotopy

Groups

In order to apply the bar construction to mixed Hodge theory, one needs to
show that the bar construction of a di↵erential graded algebra which is a
mixed Hodge complex is again a mixed Hodge complex.

Definition 8.38. Let k be a subfield of R. A mixed (commutative) k-Hodge
complex

A := ((Ak, W ), (AC, W, F ) ,�A : (A, W )⌦ C

qis

⇠��! (AC, W ))

built on Ak is a multiplicative mixed Hodge complex if Ak and AC are
(commutative) di↵erential graded algebras and the comparison isomorphism
�A is a morphism of filtered di↵erential graded algebras.

If we regard (k, C) as a k-mixed Hodge complex by giving k pure Hodge
type (0, 0), an augmentation ✏ : A ! k is required to be a morphism of
k-mixed Hodge complexes. We say then that (A, ✏) is an augmented multi-
plicative k-mixed Hodge complex.

So, if (A, ✏) is an augmented multiplicative k-mixed Hodge complex there is
a splitting of mixed Hodge complexes A = Ker ✏� k.

Recall the bar construction of a di↵erential graded algebra A:

Bn(A) =
M

s�1

⇥
IA⌦ · · ·⌦ IA| {z }

s

⇤n+s

,

where IA is the augmentation ideal. We see that BnA inherits weight and
Hodge filtrations from A. However, the weight filtration does not give the
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correct weight filtration on BA. Indeed, in general there appears a shift when
we pass from the weight filtration on a mixed Hodge complex to that of its
cohomology (Theorem 3.18). Here, making this shift on the level of complexes,
i.e. on BA, will produce the correct weight filtration in cohomology (which
computes homotopy) if one uses the bar-weight filtration given by the
di↵erential graded subalgebras

(BW )kA =
M

s�0

Wk�s

⇥
IA⌦ · · ·⌦ IA| {z }

s

⇤•+s

.

The basic technical result [Hain87, 3.2.1], then is

Proposition 8.39. If A is a connected augmented multiplicative mixed k-
Hodge complex, the bar construction BA with induced Hodge filtration and bar-
weight filtration is a mixed Hodge complex. If A is commutative, the shu✏e-
product preserves both filtrations and BA is a multiplicative mixed Hodge com-
plex. Moreover, the co-product is a morphism of multiplicative mixed Hodge
complexes.

Proof. Let us first write down the E0- and E1-terms for the bar-weight filtra-
tion

BW Ep,q

0
= GrBW

�p
(Bp+qA) =

M

s�0

GrW

�p�s

⇥
IA⌦ · · ·⌦ IA| {z }

s

⇤p+q+s

,

=
M

s�0

W Ep+s,q

0

⇥
IA⌦ · · ·⌦ IA| {z }

s

⇤•+s

BW Ep,q

1
= Hp+q(GrBW

�p
BA) =

M

s�0

Hp+q(GrW

�p�s

⇥
IA⌦ · · ·⌦ IA| {z }

s

⇤•+s)

=
M

s�0

W Ep+s,q

1

⇥
IA⌦ · · ·⌦ IA| {z }

s

⇤•+s

.

Unravelling the definitions, what one needs to prove is that the di↵erential
d0 on the E0-term for the bar-weight filtration is strict with respect to the
F -filtration and that the E1-terms carry pure Hodge structures.

Now IA underlies a mixed Hodge complex and hence, by Lemma 3.20,
so does its s-th tensor product. Since d0 is strictly compatible with the F -
filtration on the W E0 terms by definition of a mixed Hodge complex, the same
hold then for d0 on the E0-terms of the bar-weight filtration.

Next, since the s-th tensor product of IA underlies a mixed Hodge com-
plex, by definition each of the summands of the E1-terms carries a pure Hodge
structure of weight q and so does BW Ep,q

1
completing the proof. ut

Corollary 8.40. The space of the indecomposables QH⇤(BA) in the coho-
mology of the bar construction of a connected augmented multiplicative mixed
Hodge complex A carries a k-mixed Hodge structure. Moreover, the co-bracket
(VIII–2) is a morphism of mixed Hodge structures.
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Proof. From the general results on mixed Hodge complexes (Theorem 3.18),
it follows that the cohomology of the bar construction BA carries a mixed k-
Hodge structure. It also follows that the product in the algebra BA induces a
morphism of mixed Hodge structures on H⇤(BA) as well as on the augmenta-
tion ideal J = Ker(H⇤(BA)! k) so that J2 is a sub mixed Hodge structure
and J/J2 = QH⇤(BA) receives the structure of a k-mixed Hodge structure.
Since the co-product on H⇤(BA) is a morphism of mixed Hodge structures
(Prop. 8.39), the same holds for the co-bracket on its decomposables (make
use of the description of the co-bracket (VIII–2)). ut

Corollary 8.41. The homotopy groups of a simply connected smooth complex
projective variety carry a functorial mixed Hodge structure. The Whitehead
products are morphisms of mixed Hodge structure.

Proof. We have seen (Example 2.34) that there is a pure Q-Hodge complex
of weight 0 which computes the integral cohomology of X. It consists of the
two complexes

(R� (X, Z)⌦Q, (R� (X,⌦•), trivial filtration))

together with the comparison isomorphisms induced by the injection C ,! ⌦•.
To get a multiplicative complex we must choose a concrete realization of the
complex R� (X, Z)⌦Q which is a commutative di↵erential graded algebra. We
take the Sullivan algebra AQ of Q-polynomial di↵erential forms together with
the trivial filtration. The latter respects multiplication of di↵erential forms and
hence this gives a Q-augmented multiplicative mixed Hodge complex built on
AQ. Choosing a base point x 2 X gives BA the structure of an augmented
commutative di↵erential graded Hopf algebra and Corollary 8.40 then states
that the indecomposables QH⇤(BA) admit a mixed Hodge structure. The
theorem of Borel-Serre (8.6) tells us that the degree s-piece of this space is
dual to the homotopy group ⇡s+1(X,x) which therefore also gets a mixed
Hodge structure.

By Theorem 8.10 the dual of the Whitehead product is the co-bracket
on the decomposables in the cohomology of the loop space. So, again by
Corollary 8.40, it is a morphism of mixed Hodge structures. ut

Remark. As in Remark 8.37, one can extend the preceding constructions to
smooth not necessarily compact complex projective varieties.

For possibly singular complex algebraic varieties, we have put a mixed
Hodge structure on the cohomology starting from the Hodge- De Rham com-
plexes of sheaves on the smooth varieties of a suitable cubical hyperresolution.
Taking global sections of the Godement resolution then gives the De Rham
complex whose cohomology gets the induced mixed Hodge structure. Replac-
ing the De Rham complex by a suitable logarithmic version of the Sullivan
De Rham complex we can even extend the preceding constructions to this
situation as well. The details can be found in [Hain87].
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Theorem 8.42. The mixed Hodge structure on the homotopy group ⇡s(X, y),
s � 2 is independent of the chosen base point y 2 X.

Proof. Note that for a simply connected and connected space X there is a
canonical isomorphism

� = �� : ⇡s(X, y)! ⇡s(X,x)

by choosing any path � from x to y. More precisely, the map

� : Px,yX ⇥ PyX ! PxX
(�,↵) 7! � ⇤ ↵ ⇤ ��1

induces a graded homomorphism QH⇤(PxX) ! QH⇤(PyX) which corre-
sponds to the dual of � under the Borel-Serre isomorphism (Prop. 8.10).

We need a suitable multiplicative mixed Hodge complex that computes
H⇤(Px,yX) such that � induces a morphism of mixed Hodge structures. Now
recall that we have discussed a generalization of the bar-construction in Re-
mark 8.22. We use the notation employed there and we use in particular the
notation of the example. It is fairly obvious that the di↵erential graded algebra
B̄(kx,AQ⌦k, ky) k = Q, R are the ingredients needed. Our di↵erential graded
algebras B̄(kx,AQ ⌦ k, kx) and B̄(ky,AQ ⌦ k, ky) compute the cohomology of
PxX respectively PyY and the product

B̄(kx,AQ ⌦ k, kx)! B̄(kx,AQ ⌦ k, ky)⌦ B̄(ky,AQ ⌦ k, ky)
(!1| · · · |!s) 7!

P
0i<j<s

±(!1| · · · |!i) ^ (!s| · · · |!j+1)⌦ (!i+1| · · · |!j)

relates these. Now, the cohomology of the left hand side computes H⇤(PxX; k),
while the right hand computes the cohomology of Px,yX ⇥ PyX. Since
H0(Px,yX; k) = k, projection on the appropriate summand of the Künneth
decomposition then gives

Hk(PxX; k)! H0(Px,yX; k)⌦Hk(PyX; k) ⇠= Hk(PyX; k).

On the level of indecomposables this is exactly the dual of the map �. Since
the map �⇤ clearly preserves Hodge and weight filtrations, the above map �⇤
and its dual � must be maps of mixed Hodge structures. ut

Finally we look at the Hurewicz homomorphism:

Theorem 8.43. For a simply connected algebraic variety the Hurewicz ho-
morphism

hk : ⇡k(X, x)! Hk(X)

is a morphism of mixed Hodge structures.

Proof. Consider the suspension map

s : (I, @I)⇥ PxX ! (X,x)
(t, �) ���! �(t).
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It induces the map s⇤ : Hs(PxX) ⇠= Hs(PxX)⌦H1(I, @I)! Hs+1(X) fitting
in the commutative diagram

⇡s+1(X,x)
hs+1���! Hs+1(X)����

x??s⇤

⇡s(PxX, ex)
hs��! Hs(Px).

Now dually this gives

Hom(⇡s+1(X,x), Q) h
s+1

 ��� Hs+1(X; Q)����
??ys

⇤

Hom(⇡s(PxX, ex), Q) ⇠ ����
Qh

s
QHs(Px),

where s⇤ comes from the integration map A
s+1(X) ! A

s(PxX) (an (s + 1)-
form ↵ is mapped to its iterated integral

R
↵, viewed as an s-form on PxX).

It follows that on the level of di↵erential graded algebras the Hurewicz map
hs+1 is induced by the map

A
s+1

Q
(X)! B̄A

s+1

Q
(X)

↵ 7! (↵).

This map therefore obviously preserves weight and Hodge filtrations. ut

Historical Remarks. Most of the results in this chapter are due to Hain
([Hain87]). It uses the approach to homotopy De Rham theorems through iter-
ated integrals as initiated by K.T. Chen [Chen76] who built on topological results
of Adams [Adams] (in the simply connected case) as well as Stallings [Stal] (for the
fundamental group).
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Hodge Theory and Minimal Models

This chapter is devoted to Sullivan’s theory of the minimal model and Morgan’s
construction of a mixed Hodge structure on the homotopy groups using minimal
models. A priori this mixed Hodge structure might di↵er from Hain’s. But in fact,
for the higher homotopy groups the two are equal (as communicated to us by Hain).
However, since the base point is absent in Morgan’s construction for the fundamental

group, it cannot be the same as Hain’s. On the other hand, Morgan’s construction
is more powerful since it gives a mixed Hodge structure on the cohomology level of
the constituents of the (rational) Postnikov tower (which contains all information
from rational homotopy).

We briefly sketch Morgan’s construction in case of a simply connected compact
Kähler manifold, omitting his construction for the mixed Hodge structure of the
fundamental group. See also Remark 9.25.

A rough outline of Morgan’s construction goes as follows. Recall (Theorem 8.35)
that for any polyhedron X, Sullivan has shown that the di↵erential graded algebra
A(X) of polynomial forms with rational coe�cients computes H

⇤(X; Q). The idea
is that this di↵erential graded algebra contains su�cient information to reconstruct
the rational homotopy type of X. For simply connected spaces this just means
that we can compute ⇡k ⌦ Q, k > 1, but it is more complicated to define what is
meant by ⇡1⌦Q. In the simply connected case, treated in § 9.2 and § 9.3, the main
result is that for k � 2 the rational homotopy group ⇡k ⌦ Q is canonically dual
to the indecomposables in degree k of a certain di↵erential graded algebra MA(X))
canonically associated to A(X), the minimal model. In our case, the fact that the
cohomology of X is finite dimensional implies that the model MA(X)) is also finite
dimensional. There is a mixed Hodge structure on this algebra compatible with the
di↵erential and the wedge product. This is the content of Morgan’s main result,
stated in § 9.3, but whose proof we only sketch. It follows that the indecomposables
carry a mixed Hodge structure.

In § 9.4.1 Sullivan’s construction for the fundamental group is explained with
an application to Kähler manifolds in § 9.4.3: the real De Rham fundamental group
is determined by the cup-product form on H

1. This turns out to impose severe
restrictions on the possible fundamental groups of Kähler manifolds.
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9.1 Minimal Models of Di↵erential Graded Algebras

We start with the basic definitions. Let us work over a fixed field k. We shall
work with connected di↵erential graded k-algebras A (i.e. A0 = k) so that
the augmentation ideal equals

I(A) = A+ =
M

p>0

Ap

and the indecomposables Q(A) = I(A)/I(A)2 can be viewed as the k-space
generated by a minimal set of generators. An algebra A is said to be 1-
connected if it is connected and if H1(A) = 0.

We shall build an extension of A by adjoining the elements in degree n as
follows. Let V be a k-vector space and let ⇤nV be the free graded commutative
algebra with unit generated by V (so that ⇤nV is the polynomial algebra on
V if n is even and the exterior algebra if n is odd).

Definition 9.1. Let A be a di↵erential graded k-algebra and let V be a finite
dimensional k-vector space. A linear map ' : V ! A(n+1) with d�' = 0 deter-
mines a Hirsch extension in degree n. This is the algebra A⌦⇤nV made
into a di↵erential graded algebra by placing V in degree n and by extending
the di↵erential upon setting dx = '(x) when x 2 V . This di↵erential graded
algebra is denoted

A⌦' ⇤nV.

The Hirsch-extension is decomposable if the image of ' is decomposable,
i.e. '(V ) ⇢ A+ ^A+ = I(A)2.

Remark 9.2. Clearly, the indecomposables of a decomposable Hirsch extension
are just the direct sum of V with the indecomposables of A.

A minimal di↵erential graded algebra is built from k by successive decom-
posable Hirsch extensions. For a given di↵erential graded algebra A a minimal
model MA is a minimal di↵erential graded algebra which is quasi-isomorphic
to A and which maps to A. Formally:

Definition 9.3. 1) A di↵erential graded algebra M is called minimal if
– M

0 = k (i.e. it is connected);
– dM ⇢ M

+ ^M
+ = IM

2, i.e. d is decomposable. Equivalently, d induces
the zero map on the indecomposables QM;

– There is a series for M, i.e. an increasing union of di↵erential graded
sub-algebras

k = M0 ⇢ M1 ⇢ M2 ⇢ · · ·M

such that Mn ⇢ Mn+1 is a Hirsch extension.
2) A minimal model MA for a given di↵erential graded algebra A is a
minimal di↵erential graded algebra MA together with a quasi-isomorphism
of di↵erential graded algebras f : MA! A.
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If M is minimal and 1-connected, there is a canonical series for M by letting
Mn be the subalgebra generated by elements in degrees  n. In this case
Mn ⇢ Mn+1 is indeed a Hirsch extension of degree n as we shall explain. We
have a representation Mn+1 = Mn⌦⇤n+1V as vector spaces with V the vector
space of indecomposables of M in degree n + 1. Since d is decomposable, and
since there are no degree 1 elements, for any v 2 V the derivative dv is a linear
combination of elements that are products of indecomposables in degrees at
most n, i.e. dv 2 Mn. Conversely we have:

Theorem 9.4. Any di↵erential graded algebra A which is 1-connected has a
minimal model MA with M

1(A) = 0. If H⇤(A) is a finite dimensional k-vector
space, then the minimal model MA is a finitely generated k-algebra.

Sketch of the proof. We put M0 = k, f0 : k ! A the canonical map and
we assume inductively that we have constructed successive Hirsch extensions
M0 ⇢ · · · ⇢ Mm and maps of di↵erential graded algebras fj : Mj ! A, j =
0, . . . ,m which are isomorphisms in cohomology of degree  j and injections
in degree m + 1. We want to construct the next step as a Hirsch extension
of Mm. Consider Cone•(fm). The exact sequence of the cone (A–12) together
with the inductive assumptions show that Hi(Cone•(fm)) = 0 for i  m + 1.
We put V = Hm+2(Cone•(fm)) and we define fm+1 : V ! Am+1 by choosing
a section of

{(m + 2)-cocycles in Cone•(fm)} �! Hm+2(Cone•(fm))

and then projecting onto the M -summand. Explicitly, choose, linearly in w 2
V , cocycle representatives (mw, aw) 2 M

m+2

m
� Am+1 . Hence dmw = 0,

fm(mw) = daw and the class of mw is w. Then we define fm+1(w) = aw

and Mm+1 = Mm ⌦fm+1
⇤m+1V . The map fm+1 : Mm+1 ! A equals fm on

Mm and fm+1 on V and is extended multilinearly. We define dw = mw in
Mm+1 so that d(dw) = dmw = 0 and fm(dw) = fm(mw) = daw = dfm+1w so
that fm+1 is a map of di↵erential graded algebras. The verification that fm+1

induces an isomorphism in cohomology up to degree  m+1 and an injection
in degree m+2 is left to the reader. For details, we refer to [Grif-Mo, Ch. IX].
ut

Example 9.5. Let A be the De Rham algebra of P
n. Clearly M2(A) = P (u),

the polynomial algebra on a generator of degree 2. Since un+1 = dv2n+1, we
find

MA = P (u)⌦id ⇤2n+1[v2n+1].

Next, we need to discuss unicity of the minimal model. One uses the con-
cept of homotopic di↵erential graded algebras. To explain this, let k[t, dt]
be the tensor product k[t] ⌦ ⇤(dt) where we place t in degree 0 and dt in
degree 1. The di↵erential is the obvious one, sending p(t) to p0(t)dt and dt
to 0. For k = R one can view this as the algebra of di↵erential forms on
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the real line with polynomial coe�cients. A homotopy between two di↵er-
ential graded algebra homomorphisms f, g : A ! B is a map of di↵erential
graded algebras H : A! B⌦ k[t, dt] such that f = e(0)�H, g = e(1)�H. Here
e(x) : B ⌦ k[t, dt]! B is the evaluation map t 7! x 2 k, dt 7! 0.

In loc. cit. one finds the unicity statement for minimal models:

Theorem 9.6. Let A be a 1-connected di↵erential graded algebra and let
f : MA! A, f 0 : M

0A! A two minimal models for A with MA1 = M
0A1 = 0.

There exist an isomorphism ◆ : MA
⇠�! M

0A such that f and f 0�◆ are homo-
topic. The isomorphism ◆ is determined up to a homotopy by this condition.

Remark 9.7. The minimal model MA has no generators in degree 1. This im-
plies that the map ◆ induces a unique isomorphism between the indecom-
posables. To explain this, recall that the indecomposables in degree n in a
minimal model is the vector space, say Vn, used to build the n-th step of the
filtration as a Hirsch-extension. The map ◆ being unique on the successive
quotients of the canonical filtration induces a unique map on the quotients of
the induced filtration on decomposables. But this filtration is split by degree
and the degree n piece is exactly Vn. So ◆ is indeed unique on decomposables.
We say that the space of indecomposables is a homotopy invariant.

In the non-simply connected case this notion has to be adapted. Without
giving the details here, let us only mention that the appropriate notion is that
of lomotopy as introduced by Halperin [Halp, 11.19]. We refer to loc. cit. for
the unicity statements in the non simply-connected case.

9.2 Postnikov Towers and Minimal Models; the Simply

Connected Case

Recall [Span, p. 426], that for any n � 1 and any group ⇡ (abelian if n > 1),
there exists a CW complex K(⇡, n) which is unique up to homotopy and has
exactly one non-vanishing homotopy group, ⇡n = ⇡. Recall also that the path
space PK(⇡, n + 1) fibres over K(⇡, n + 1) with fibre K(⇡, n). Given a path
connected base space B with base point b and a fibration E ! B over it, we
say that the fibration is principal if the action of ⇡1(B, b) on the fibre is trivial
up to homotopy. This is in particular the case if the base is simply connected.
So PK(⇡, n+1)! K(⇡, n+1) is a principal fibration if n � 1, the universal
principal fibration with fibre K(⇡, n). Indeed, any principal fibration over
B with fibre K(⇡, n) is obtained by pulling back this universal fibration by
means of a map f : B ! K(⇡, n + 1), unique up to homotopy. By [Span, p.
447] this map is classified by its obstruction class e(f) 2 Hn+1(B;⇡), i.e.
there is a bijection

e : [B,K(⇡, n + 1)] !1:1 Hn+1(B;⇡).

In the remainder of this chapter we shall restrict ourselves to a simply con-
nected topological space X. The diagram
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...??y
Xn??y

Xn�1

...??y
X X3??y

X2 = K(⇡2(X), 2)

�

�

�

�

�

�
�✓

-

Q

Q

Q
Qs

⌘

⌘

⌘

⌘

⌘

⌘⌘3

f2

f3

fn�1

fn

is called a Postnikov tower of X if the following conditions are satisfied

1. Xn has zero homotopy groups in degrees > n;
2. Xn ! Xn�1 is a principal fibration with fibre K(⇡n(X), n);
3. fn induces a isomorphisms ⇡k(X) ⇠�! ⇡k(Xn) for k  n.

A Postnikov tower is inductively built as a tower of principal fibrations
starting from K(⇡2, 2) and stage Xn is built from Xn�1 by specifying a char-
acteristic element en+1 2 Hn+1(Xn�1;⇡n(X)). Such towers exist (loc. cit,
p. 444). Moreover, taking the limit of the inverse system we get a space
X 0 = limn Xn with the same homotopy type as X. So we can recover X
up to homotopy from its Postnikov tower.

Next we need the concept of a rational Postnikov tower. This tower
encodes the information in the Q-vector spaces ⇡k(X) ⌦ Q, k � 2. To do
this, consider the CW complex K(Q, n). So, if ⇡2(X)⌦Q ⇠= Q

s we can start
with (X2)Q = K(⇡2(X)⌦Q, 2) =

Q
s K(Q, 2). Then one inductively replaces

each fibration Xn ! Xn�1 in the construction of the Postnikov tower by the
corresponding fibration (Xn)Q ! (Xn�1)Q using the characteristic element

(en+1)Q 2 Hn+1((Xn�1)Q;⇡n(X)⌦Q) =
HomQ

�
(⇡nX ⌦Q)_ , Hn+1((Xn�1)Q; Q)

�
.

For details see [Grif-Mo, Chapter VII].
The basic idea of Sullivan’s theory is that from this rational Postnikov

tower, one can inductively build a minimal model MA(X) for the Sullivan
algebra A(X) by making a Hirsch extension with V the dual of ⇡n(X) ⌦ Q

and ' any Q-linear map

' : (⇡n(X)⌦Q)_ ! {closed forms in An+1((Xn�1)Q)}

which induces the characteristic element

(en+1)Q 2 HomQ

�
(⇡nX ⌦Q)_ , Hn+1((Xn�1)Q; Q)

�
.

The statement of the following theorem follows quite directly from this.
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Theorem 9.8 ([Sull]). Let X be a simply connected polyhedron with finite-
dimensional rational cohomology H⇤(X; Q). Then the canonical series of the
minimal model MA(X) of the Sullivan algebra A(X) has the following prop-
erties.

1) MjA(X) is the minimal algebra of the Sullivan algebra of the j-stage of
the rational Postnikov tower;
2) The space of indecomposables of MA(X) in degree n is canonically dual
to ⇡n(X) ⌦ Q and the characteristic element (en+1)Q gets identified with
the map

QMA(X)n = (⇡n(X)⌦Q)_ ! Hn+1(Mn�1A(X))

induced by the n-th step extension of the minimal model;
3) The Whitehead product

X

i+j=k

(⇡iX ⌦Q)⌦ (⇡jX ⌦Q)! ⇡k�1X ⌦Q

is dual to the map induced by

d : Qk�1
MA(X)! (QMA(X) ^QMA(X))k .

Example 9.9. We computed the minimal model of the De Rham algebra of P
n

in Example 9.5. It follows that

⇡k(Pn)⌦Q =
⇢

0 k 6= 2, 2n + 1
Q k = 2, 2n + 1.

9.3 Mixed Hodge Structures on the Minimal Model

The basic result is the following theorem together with its ensuing corollary.

Theorem 9.10 ([Mor]). Let X be a simply connected smooth complex vari-
ety. The minimal model MA(X) of the Sullivan algebra admits a mixed Hodge
structure with the following properties

1) The defining morphism f : MA(X)! A(X) induces a morphism of mixed
Hodge structures in cohomology;
2) The di↵erential and product structure of MA(X) are morphisms of mixed
Hodge structures;
3) The mixed Hodge structure is well-defined and functorial only up to ho-
motopy.

Corollary 9.11. Let X be a simply connected smooth complex variety.

1) The rational homotopy groups carry a functorial mixed Hodge structure
and the Whitehead products are morphisms of mixed Hodge structure;
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2) The rational cohomology rings of the stages Xn in the rational Postnikov
tower carry a mixed Hodge structure and the maps in this tower X ! Xn

and Xn+1 ! Xn induce morphisms of mixed Hodge structures in rational
cohomology;
3) The rational invariants

(en+1)Q : [⇡n(X)⌦Q]_ ! Hn+1(X; Q)

are morphisms of mixed Hodge structures.

Proof (of the corollary). Use the fact (see Remark 9.7) that in the simply
connected case the indecomposables form a homotopy invariant of the minimal
algebra, and then use Theorems 9.8 and 9.10. ut
Remark 9.12. 1) It can be shown (D. Hain, letter to the authors) that the

mixed Hodge structure on the homotopy groups as constructed by Hain
(see the previous Chapter) is the same as the one found by Morgan.
2) Morgan’s constructions can be modified so as to apply to cubical schemes
and thus there are results similar to the previous two theorems valid for
arbitrary complex algebraic varieties. See [Nav] for details.

Before giving a sketch of the proof of Theorem 9.10, we need to introduce
one of the basic ingredients in Morgan’s proof:

Definition 9.13. Let k be a field contained in R. A k-mixed Hodge dia-
gram consists of a (biregularly) filtered di↵erential k-algebra (A, W ) and a
bi-filtered di↵erential C-algebra (E,W, F ) together with a comparison mor-
phism, which is a quasi-isomorphism of filtered di↵erential algebras

(A, W )⌦k C

qis

⇠��!
�

(E,W )

such that
1) if we use � to put a real structure on the terms of the W -spectral sequence,
the inductive F -filtration (§ 3.2) on the terms W Ep,q

1
(E) is q-opposed to its

complex conjugate;
2) the di↵erentials of the W -spectral sequence are strictly compatible with
the inductive F -filtration.

To compare two such diagrams we introduce two more concepts:
1) An elementary equivalence between mixed Hodge diagrams ((A, W ),�,
(E,W,F )) and ((A0, W ),�0, (E0, W, F )) consists of a commutative diagram

AC

�

�! E??yfC

??yg

A0
C

�
0

��! E0

of quasi-isomorphisms of di↵erential algebras together with a homotopy H
between g�� and �0�fC such that fC and H are compatible with W and g
is compatible with F and W .
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2) An equivalence is a finite string of elementary equivalences, possibly
with arrows in both directions.

Remark. 1. Let (A, W ),�, (E,W,F ) be a mixed Hodge diagram. Putting
the conjugate filtration F̄ on Ē defines the conjugate diagram ((A, W ), �̄,
(Ē,W, F̄ )).

2. The condition 2) for a mixed Hodge diagram implies that the inductive
F -filtration on the terms of the W -spectral sequence coincides with the
first and second indirect filtrations (Theorem 3.12). There is therefore no
danger of confusion when we speak in the sequel of the F -filtration on
these terms. Condition 1) implies that Hp+q(GrW

�p
E) has a pure Hodge

structure of weight q and hence

(A, (A, W ), id, (E,W,F ),�)

is a mixed k-Hodge complex; because � is compatible with the multi-
plication, it is even a multiplicative mixed Hodge complex in the sense of
Def. 8.38. Moreover, equivalent diagrams give quasi-isomorphic multiplica-
tive mixed k-Hodge complexes. So the above concept can be considered
as a refinement. In particular, the filtrations Dec W and F induce the
structure of a mixed Hodge structure on the cohomology H⇤(A).

Examples 9.14. 1) Let X be a smooth projective variety. The De Rham alge-
bra EDR(X) and the usual Hodge filtration on its complexification defines
a real mixed Hodge diagram by classical Hodge theory (Chap. 2). The com-
parison morphism is the identity in this case.
2) Let U be a smooth algebraic variety, X a good compactification of U with
inclusion j : U ,! X. Let Dj , j 2 J be the components of D = X � U .
We define EDR(X,D) be the di↵erential graded algebra generated by the
EDR(X) and symbols ✓j of degree 1 with d✓j = !j , a closed smooth 2-form
on X with support in a tubular neighbourhood Uj of Dj such that its class
in H2

Dj
(Uj) = H2(Uj , Uj �Dj) is the Thom class. The W -filtration counts

the number of ✓j . For E we take the smooth De Rham complex E(X log D)
with logarithmic forms along D with the usual weight and Hodge filtration
(see Remark 4.4). The comparison morphism

� : EDR(X, D)⌦ C! E(X log D)⌦ C

can be defined as soon as a 1-form �j with logarithmic singularities along D
has been constructed with d�j = !j . See [Mor, Lemma 3.2]. Indeed, we then
put �(✓j) = �j . The fact that we do obtain a real mixed Hodge diagram
is a restatement of the main results in Chap. 4. See [Mor, §3]. We call
(EDR(X,D), W ),�, (E(X log D), W, F )) a Hodge-De Rham diagram for
(X,D). Any other compactification of U and other choices for the forms
✓j or �j lead to equivalent mixed Hodge diagrams. So Hodge-De Rham
diagrams are defined up to equivalences.
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Proof (Sketch of the proof of Theorem 9.10).
Step 1. The complex bigraded minimal model. We consider more generally 1-
connected real di↵erential graded algebras A with finite dimensional cohomol-
ogy. We assume that these fit into a mixed Hodge diagram ((A, W),�, (E,W,F ))
so that the cohomology H⇤(E) ⇠= H⇤(A)⌦C admits a real mixed Hodge struc-
ture. Since the real minimal model f : MA! A is a quasi-isomorphism, also
H⇤(MA) receives a real mixed Hodge structure. On the complex cohomol-
ogy we therefore have a canonical bigrading, the Deligne splitting (Lemma-
Def. 3.4). This bigrading can be lifted to a bigraded minimal di↵erential graded
algebra which has certain extra properties which make it unique up to homo-
topies, the bigraded minimal model of A⌦ C.

Definition 9.15. 1) A di↵erential graded algebra M has a compatible bi-
grading if

M =
M

0r,s

Mr,s, M0,0 = A0 = k,

such that the wedge product and the d-operator are of type (0, 0).
2) A morphism from a di↵erential graded algebra M with compatible bi-
grading to a mixed Hodge diagram D = (A, W ),�, (E,W,F ) consists of a
diagram

M

 ⇢

???y  0

E
�

 � A⌦ C
�̄

�! Ē

�

�

� 

@

@

@R

and homotopies H : M ! E ⌦ k[t, dt] and H 0 : M ! Ē ⌦ k[t, dt] from ��⇢
to �̄�⇢ such that (as usual, Dec W denotes the filtration W backshifted as
in Remark A.50):

⇢(Mr,s) ⇢ (Dec W )r+sA,
 (Mr,s) ⇢ Rr,sE,  0(Mr,s) ⇢ Lr,sĒ
H⇤(Mr,s) ⇢ (Dec W )r+sE ⌦ k[t, dt], H 0(Mr,s) ⇢ (Dec W )r+sĒ ⌦ k[t, dt].

Here
⇢

Rr,sE = (Dec W )r+s \ F rE
Lr,sĒ = (Dec W )r+sĒ \ F̄ qĒ +

P
i�2

(Dec W )r+s�iĒ \ F̄ r�i+1Ē.

If in addition ⇢ : M ! A ⌦ C is a minimal model for A ⌦ C, we say that
M(D) := (M, , ⇢, 0, H, H 0) is a bigraded minimal model for D.

The main result concerning existence and uniqueness of bigraded models is as
follows:

Theorem 9.16 ([Mor, §6]). Any mixed Hodge diagram D = ((A, W ),�,
(E,W,F )) has a bigraded minimal model M(D). The bigrading induced on
the cohomology H⇤(D) by its (own) mixed Hodge structure agrees with the
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bigrading induced on the cohomology of the minimal model MD. Equivalent
mixed Hodge diagrams give rise to isomorphic bigraded minimal models. The
isomorphism is unique up to a homotopy compatible with the bigradings.

The bigraded minimal model for a such a mixed Hodge diagram D for sim-
plicity will be written M(A⌦ C) and the morphism

⇢ : M(A⌦ C)! A⌦ C

will be called the complex minimal model. The bigrading on M(A ⌦ C)
define weight and Hodge filtrations:

Wm(M(A⌦ C)) :=
L

r+sm
M(A⌦ C)r,s

F k(M(A⌦ C) :=
L

r�k
M(A⌦ C)r,s.

A restatement of Theorem 9.16 in terms of these is:

Corollary 9.17. The bigraded morphism

M(A⌦ C)
��⇢
���! E

sends the filtrations induced by (W,F ) to the filtrations (Dec W,F ) on E.

We finish this first step by applying the above to the geometric situation:
let U be a smooth complex algebraic variety with compatible compactification
(X,D). We conclude from the previous corollary that the minimal model

M(X; C) :=MEDR(X; C)

of the complex De Rham forms gets a bigrading through the choice of a
Hodge-De Rham diagram for (X, D). Moreover, di↵erent choices di↵er by
automorphisms homotopic to the identity.

Step 2. Weight filtrations and mixed Hodge structures on the real model.
Still in the general situation of a Hodge diagram as in step 1, we want to find
a weight filtration W on the real minimal model ME such that

⇢ : (ME,W )! (E,Dec W )

is a filtered algebra morphism. This is an example of a more general concept:
Definition 9.18. 1) A filtration W on a minimal algebra M is called min-

imal if both d and the product are strictly compatible with W ;
2) the filtration on a filtered algebra (A, W ) passes to the minimal model
if there exists a minimal model ⇢ : M ! A for A together with a mini-
mal filtration on M such that ⇢ is compatible with the filtrations. We call
(M, W )

⇢

�! (A, W ) a filtered minimal model.

By [Mor, Cor. (7.6)], filtered minimal models are unique up to isomorphisms,
themselves unique up to homotopies preserving the filtrations.

As an example, the weight filtration on A⌦C passes to M(A⌦C) and we
need to see that it passes to MA. This is possible thanks to:
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Principle (of deforming the field of definition [Mor, Thm. (7.7)]). If
(A, W ) is a filtered k-algebra (k ⇢ C a subfield) and (A, W )⌦C passes to the
minimal model, then also (A, W ) does. Moreover, if two minimal filtrations
on the same minimal model have the property that over C the identity is
homotopic to a filtered isomorphism, then the same is true over k.

It follows that the weight filtration on the real minimal model passes to the
minimal model.

Now we have almost all the ingredients needed to put a real mixed
Hodge structure on the real minimal model of a mixed Hodge diagram
((A, W ),�, (E,W,F )). In fact, because the comparison morphism � is a quasi-
isomorphism, there is an isomorphism

M(�) : M(A⌦ C)! ME

which is well defined up to homotopy and which may be assumed to be an
isomorphism of filtered minimal models (since � induces a quasi-isomorphism
(A,Dec W ) ⌦ C ! (E,Dec W )). Moreover such a filtered isomorphism M(�)
is well-defined up to homotopy compatible with the filtrations. One then can
complete this step to arrive at the following result:

Theorem 9.19 ([Mor, Theorem (8.6)]). Suppose that A is 1-connected
and that H⇤(A) is finite dimensional. If A fits into a Hodge diagram, any
filtered isomorphism M(�) as above defines a real mixed Hodge structure on
MA such that d and the product are morphisms of mixed Hodge structures.
The map induced by ⇢ : MA ! A in cohomology is a map of mixed Hodge
structures, where we put a mixed Hodge structure on H⇤(A) by viewing a
mixed Hodge diagram as a mixed Hodge complex.

As an aside, the proof consists of an easy induction argument, exploiting the
construction of the minimal model.
Step 3. Rational structures. Here we go back to the construction of the Q-
multiplicative mixed Hodge complexes which give the rational cohomology of
a smooth algebraic manifold U (§ 8.6) and refine them to a Hodge diagram
as follows. Let (X,D) be a good compactification for U and choose a C1-
triangulation for X such that D becomes a subcomplex. We let A(X) be the
Sullivan complex of Q-polynomial forms with respect to this triangulation and
likewise, we let A1(X) be the version with piece-wise smooth forms. We next
define an algebra A(X,D) built from A(X) in a similar way as EDR(X, D)
is built from EDR(X) (Example 9.14 2)). We then define A1(X,D) starting
from A1(X). We refer to [Mor, §2] for the definition of the arrows in the
following diagram and for the proof that is commutative up to homotopy

A(X,D)⌦ R ,! A1(X, D) - EDR(X)??y 
??y 1

??y DR

A(U)⌦ R ,! A1(U)  - EDR(U)
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The principle of deforming the field of definition shows that the W -filtration
on the rational algebra A(U) passes to the minimal model MA(U) and the
inclusions on the bottom line of the previous diagram, after tensoring with C,
become compatible with the weight and Hodge filtrations. Since these define
the Hodge-De Rham diagram up to quasi-isomorphisms, the mixed Hodge
structure on the complex minimal model comes from a rational weight filtra-
tion which induces the rational weight filtration on H⇤(MA(U)) ⇠= H⇤(U ; Q)
as desired. ut

9.4 Formality of Compact Kähler Manifolds

9.4.1 The 1-Minimal Model

Definition 9.20. Let A be a connected di↵erential graded algebra. A 1-
minimal model for A is a pair (M1(A), f1) with M1(A) a di↵erential graded
algebra which is an increasing union of degree 1 Hirsch extensions

k = M1,0(A) ⇢ M1,1(A) ⇢ · · ·M1(A)

and a morphism of di↵erential graded algebras f1 : M1(A)! A which induces
an isomorphism on H1 and an injection on H2.

Before stating the existence and uniqueness result, we need to discuss
base points. A choice of a base point x 2 X makes the De Rham and the
Sullivan algebra into an augmented di↵erential graded algebra. The model
k(t, dt) naturally is a k-augmented di↵erential graded algebra and we say
that a homotopy h : A! B⌦k(t, dt) preserves the augmentation if the
self-explanatory diagram

A
h�! B ⌦ k(t, dt)??y

??y
k ,! k ⌦ k(t, dt)

is commutative.

Theorem 9.21 ([Sull]).

1) Any connected di↵erential graded algebra A has a 1-minimal model and
any two 1-minimal models (M1A, f1) and (M0

1
A, f 0

1
) are related by an iso-

morphism ◆ : M1A
⇠�! M

0
1
A such that f1 and f 0

1
�◆ are homotopic. If more-

over A is augmented, there is a unique induced augmentation on M1A.
Moreover, f , ◆ and the homotopy between f and f 0

1
�◆ preserve augmenta-

tions.
2) Any homomorphism of k-augmented di↵erential graded algebra’s can be
lifted in a functorial way to a homomorphism between the 1-minimal mod-
els. This homomorphism preserves the augmentation and is unique up to
augmentation preserving homotopy.
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3) If two (augmented) di↵erential graded algebras are quasi-isomorphic, their
1-minimal models are isomorphic.

We shall review the construction of the 1-minimal model. We refer to
[Grif-Mo, Ch. XII] for details. It resembles the construction of the minimal
model in the 1-connected case as outlined in the proof of Theorem 9.4. Here
we let V1 = H1(A) and set

M1,0A = k
M1,1A = k ⌦'=0 ⇤1V1

where every element in V1 has degree 1 and boundary zero. Choosing a k-
linear section for the projection sending 1-cycles to their cohomology classes
then defines

f1,1 : V1 ! A.

For the second step we set

V2 = Ker
�
H1(A) ^H1(A) ^����!H2(A)

�
.

We let
d : V2 ! M1,1(A)2 = H1(A) ^H1(A)

be the inclusion and we set

M1,2 = M1,1 ⌦d ⇤1V2,

a Hirsch extension in degree 1. Then one defines

f1,2 : H1(A) ^H1(A)! A2

x ^ y 7! f1,1(x)f1,1(y).

For the induction step, we assume that we have

f = f1,n : M1,nA! A

inducing an isomorphism on H1 and we set

Vn+1 := Ker(f⇤ : H2(M1,nA)! H2(A)).

Then we choose, linearly in w 2 Vn+1, cocycle representatives (mw, aw) 2
M1(1;n)2 �A1 for the cone of f (see Definition A.7), i.e. dmw = 0, f(mw) =
daw and [mw] = w. Then we put

M1,n+1A := M1,nA⌦d ⇤1Vn+1

d(w) :=mw, f1,n+1(w) := daw.

Doing this for the cohomology algebra H⇤(A) (with trivial di↵erentials),
we deduce:

Proposition 9.22. The 1-minimal model of the cohomology algebra H⇤(A)
is completely determined by H1(A) and the cup product H1(A) ^ H1(A) !
H2(A).



232 9 Hodge Theory and Minimal Models

9.4.2 The De Rham Fundamental Group

In this subsection (X,x) is a path connected smooth pointed manifold with
rational De Rham algebra A. Following Sullivan, we explain how the 1-minimal
model M1A yields information about the fundamental group ⇡1(X, x).

The starting observation is that a any exterior di↵erential algebra (⇤V, d)
gives a Lie-algebra structure on L = V _ by observing that d : V ! V ^ V
dually gives a bracket L ^ L ! L for which the Jacobi identity holds since
d2 = 0. Next, consider an increasing set of di↵erential graded algebras

M = [k = M0 ⇢ M1 ⇢ M2 ⇢ · · · ]

such that each step is a degree 1 Hirsch extension, say by ⇤1V1, ⇤1V2 etc.
Then the degree 1 elements in Ms form the vector space V :=V1�V2� · · ·�Vs

and since d : V ! M
2

s�1
⇢ ⇤2V , at any stage, dually we get a Lie-algebra

Ls(M) :=V _ and hence a tower · · · ! Ls(M) ! Ls�1(M) ! · · · ! L1(M).
Applying this to the 1-minimal model M1A results in a tower

· · ·! Ls(M1A)! · · ·! L1(M1A)! k. (IX–1)

We explain how this tower is directly related to the fundamental group
through its Malcev algebra. This concept makes sense for any finitely pre-
sented group ⇡ and any field k of characteristic 0, and is called the k-Malcev
algebra L(⇡; k). To construct it, first form the completion of the group ring
k[⇡] with respect to the augmentation ideal J :

dk[⇡] = lim
 

k[⇡]/Jm.

The diagonal � : k[⇡]! k[⇡]⌦ k[⇡] extends to a continuous homomorphism
b� : dk[⇡]! dk[⇡]⌦̂dk[⇡] and gives dk[⇡] the structure of a complete Hopf algebra
containing the augmentation ideal Ĵ .

Definition 9.23. The Malcev algebra L(⇡, k) is the Lie algebra of primi-
tive elements inside dk[⇡]:

L(⇡; k) :={x 2 Ĵ | �x = x⌦̂1 + 1⌦̂x}.

Equivalently, since it is filtered by its sub algebras L(⇡; k)(s) = L(s)(⇡; k)\cJs,
setting Ls(⇡; k) = L(⇡; k)/L(⇡; k)(s+1) we can identify L(⇡; k) with the inverse
limit of the tower of nilpotent Lie-algebras

· · ·! L3(⇡; k)! L2(⇡; k)! L1(⇡; k).

This tower is related to the lower central series for ⇡:

⇡ � ⇡(2) · · · � ⇡(s) · · · , ⇡(s) :=[⇡,⇡(s�1)] (IX–2)

via the so called nilpotent completion of the tower of (finite) nilpotent groups
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· · ·! ⇡/⇡(s) ! · · ·! ⇡/⇡(2) ! 1,

as we now explain. Let cJs be the closure inside dk[⇡] of the s-th power of the
augmentation ideal. The set of group-like elements inside dk[⇡] is defined
to be

⇡(k) :={a 2 1 + Ĵ | �̂(x) = x⌦̂x}.

These indeed form a group under multiplication and ⇡(k) is filtered by sub-
groups

⇡(k)(s) :=⇡(k) \ (1 + cJs).

The map g 7! 1 + (g � 1), g 2 ⇡ induces a homomorphism ⇡ ! ⇡(k) sending
⇡s to ⇡(k)s. If the quotient ⇡/⇡s is abelian, the quotient ⇡(k)/⇡(k)s is just
the usual tensor product ⇡/⇡s⌦k. This motivates the tensor product notation

(⇡/⇡(s+1))⌦ k :=⇡(k)/⇡(k)(s+1)

so that there are natural maps ⇡/⇡(s+1) ! ⇡/⇡(s+1)⌦k. We further introduce

⇡ ⌦ k :=
h
· · ·! ⇡/⇡(s) ⌦ k ! · · ·! ⇡/⇡(2) ⌦ k ! k

i
. (IX–3)

It follows in particular that for abelian groups ⇡ this yields the ordinary tensor
product (over Z). In the special case of the fundamental group ⇡1(X, x), one
calls ⇡1(X,x)⌦ k the De Rham fundamental group. .

In the general situation, the Lie-algebra L(⇡; k) and the group ⇡(k) are
in one-two-one correspondence through the exponential map exp : L(⇡; k)!
⇡(k), since exp has a natural well-defined inverse log. The tower ⇡⌦k and the
tower for L(⇡; k) then correspond to each other under the exponential map.

For all of the above, we refer to [Quil86, A.2.6, A.2.8], and [Chen79,
(2.7.2)]. We can now state Sullivan’s result:

Proposition 9.24 ([Sull]). Let X be a path connected smooth manifold with
finitely presented fundamental group. Let k be any field contained in R. The
inductive system (IX–1) defined by the 1-minimal model of the Sullivan alge-
bra A(X) ⌦ k is canonically isomorphic to the De Rham fundamental group
⇡1(X,x)⌦ k or, equivalently, to the Malcev algebra L(⇡1(X); k).

Remark 9.25. Hain’s pro-mixed Hodge structure on the J-adic completion
\Q⇡1(X,x) (see Cor. 8.32) induces a pro-mixed Hodge structure on the subal-

gebra L(⇡; Q), the Malcev algebra. By the preceding discussion, this yields a
pro-mixed Hodge structure on the De Rham fundamental group ⇡1(X, x)⌦Q.
Hence, by Prop. 9.24 dually, the 1-minimal model itself gets an ind-mixed
Hodge structure. This complements Theorem 9.10 valid in the simply con-
nected situation.

A word of warning: this mixed Hodge structure in general di↵ers from
Morgan’s mixed Hodge structure on the 1-minimal model, also to be found in
[Mor] but which is not treated in this book.
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9.4.3 Formality

Theorem 9.26 ([Del-G-M-S]). Let X be a compact Kähler manifold. The
minimal model, respectively the 1-minimal model of the real De Rham alge-
bra EDR(X) is isomorphic to the minimal model, the 1-minimal model of its
cohomology algebra, respectively. One says that X is formal.

Proof. The real De Rham complex admits also another operator, the operator
dc = i(@ � @̄)|E(X) and the ddc lemma says that an exact form is ddc-exact,
Im d = Im dc and a d-closed form is dc-closed. This follows directly from
Lemma 1.9. From it we deduce that the inclusion of di↵erential graded alge-
bras

(dc-closed forms inside E(X), d)! (E(X), d)

is a quasi-isomorphism. On the other hand, for the same reason d induces
the zero map on the cohomology of the dc-complex, H⇤((E(X), dc) which of
course also computes the real cohomology of X. Using Lemma 1.9 again, we
see that the map of di↵erential graded algebras

(dc-closed forms inside E(X), d)! (H⇤((E(X), dc), d)

is a quasi-isomorphism. Combining all of the preceding facts, we see that the
De Rham algebra is quasi-isomorphic to the De Rham cohomology algebra
with d = 0. But quasi-isomorphic algebras have the same minimal and 1-
minimal models. ut

In the simply connected case the k-minimal model determines the k-
homotopy type and by Prop. 9.24 the 1-minimal model determines ⇡1(X)⌦k.
This, together with Proposition 9.22 implies:

Corollary 9.27. The real homotopy type of a simply connected compact
Kähler manifold is completely determined by its cohomology algebra. The real
De Rham fundamental group ⇡1(X, x) ⌦ R of a connected compact Kähler
manifold X is completely determined by H1(X; R) and the cup product
H1(X; R) ^H1(X; R)! H2(X; R).

Remark 9.28. Although the previous results show that the rational homotopy
groups of a simply connected algebraic variety X are completely determined
by the cohomology algebra H⇤(X; Q), this is not true for the mixed Hodge
structure. Counterexamples can be found in [C-C-M].

Let us next discuss Massey triple products. We start with a triple of real
cohomology classes [a] 2 Hp(X), [b] 2 Hq(X), [c] 2 Hr(X) such that [a]^[b] =
0, [b] ^ [c] = 0. Select cochains f and g such that df = a ^ b and dg = b ^ c.
The Massey triple product h[a], [b], [c]i is by definition given by

h[a], [b], [c]i = f ^ c + (�1)p�1a ^ g 2 Hp+q+r�1(X)
[a] ^Hq+r�1(X) + [c] ^Hp+q�1(X)

.
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Remark. Note that by definition, the Massey triple product of three elements
is only well defined up to certain ambiguities and to say that it vanishes means
that the triple product is zero modulo these ambiguities.

If A is any di↵erential graded algebra, we can define Massey triple products
for any triple of classes [a], [b], [c] 2 H⇤(A) with [a] ^ [b] = 0 = [b] ^ [c] and
these depend functorially on A. Notice that triple products in (H⇤(A), d = 0)
are always zero and so, if A is quasi-isomorphic to its cohomology algebra, the
Massey triple products vanish. This holds in particular for compact Kähler
manifolds:

Corollary 9.29. The Massey triple products for a compact Kähler manifold
vanish.

This has consequences for the the group cohomology H⇤(⇡1(X); R) of the
fundamental group ⇡1(X) of a compact Kähler manifold. Group cohomology
for a group ⇡ is defined as the cohomology of the Eilenberg-Mac Lane space
K(⇡, 1). By successively attaching cells of dimensions 3, 4, etc. one can kill
the higher homotopy groups of X and one obtains a continuous map c : X !
K(⇡1(X), 1) with the property that it induces an isomorphism in cohomology
in degree 0 and 1 and an injection on cohomology in degree 2. So Massey
triple products of degree 1 classes in H⇤(⇡1(X); R) vanish, when considered
as elements in H⇤(X; R). If we consider such a triple product, it is an element
of a quotient of H2(⇡1(X); R) and injectivity on H2 then implies that such
an element must be zero. We have shown:

Corollary 9.30. Suppose that ⇡ is the fundamental group of a compact
Kähler manifold. Then the Massey triple products of H1(⇡; R) must vanish.

Example 9.31. Consider the Heisenberg group H3 of upper triangular 3 by
3 integral matrices with 1 on the diagonal. We claim that it cannot be the
fundamental group of any Kähler manifold. To see this, first note that the
Malcev algebra of H3 coincides with the Lie algebra of the real Heisenberg
group (H3)R. Indeed, the augmentation ideal of the group algebra R[H3] as a
real vector space is generated by the three matrices X = X12, Y = X23, Z =
X13, where Xij is the matrix with 1 on the (i, j)-th entry and 0 elsewhere.
The only non trivial commutation relation is Z = [X,Y ]. These form the Lie-
algebra of (H3)R and since 1+X, 1+Y, 1+Z are group like this yields indeed
the Malcev algebra for H3 and the exponential map sends it isomorphically
to (H3)R = H3 ⌦ R.

The dual of this Lie algebra is a free di↵erential graded algebra M on
three generators x, y, z with only one non-trivial derivation dz = xy. This
di↵erential graded algebra is the 1-minimal model for any topological space
having H3 as its fundamental group such as K(H3, 1) and by definition H1(M)
is free of rank two with x and y as generators. Since xx = xy = 0 in H2(M),
the Massey product hx, x, yi 2 H2(M) exists and equals xz. Since this non-
zero in H2(M) the assertion follows.
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Historical Remarks. The results in this chapter are due to Morgan (see [Mor])
and uses Sullivan’s constructions from [Sull]. The extension to arbitrary algebraic
varieties can be found in [Nav].



Part IV

Hodge Structures and Local Systems
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Variations of Hodge Structure

The cohomology groups H
k(Xt) of compact Kähler manifolds Xt which vary in a

smooth family over a complex base manifold S define a local system over S and the
varying Hodge flags form the prototype of a variation of Hodge structure. These sat-
isfy certain axioms which have been verified by Gri�ths ([Grif68]): the Hodge flags
vary holomorphically and Gri�ths’ transversality holds: the natural flat connection
shifts the index of the flags back by at most 1. The variations coming from families
of compact Kähler manifolds are called geometric variations. In § 10.4 we discuss
these and show that the local system defined by the cohomology of the fibres of such
a family indeed underlies a variation of Hodge structure.

Flat connections are introduced in § 10.1 and in § 10.2 we briefly treat abstract
variations of Hodge structures. We state some important results for these whose
proofs depend on Schmid’s asymptotic analysis [Sch73] which is beyond the scope of
the present monograph. These results have have strong implications on the possible
monodromy representations for local systems underlying an abstract variation of
Hodge structure. We give two examples of such restrictions: implications for the
Mumford-Tate groups and relation with big monodromy groups.

10.1 Preliminaries: Local Systems over Complex

Manifolds

Let S be a complex manifold and let V be a locally constant sheaf of complex
vector spaces. Then V := V⌦C OS is a holomorphic vector bundle on S. For
v, f local sections of V and OS respectively the assignment

r : V ! ⌦1

S
⌦OS V

v ⌦ f 7! df ⌦ v,

defines a C
S
-linear map for which the Leibniz rule holds:

r(fs) = fr(s) + df ⌦ s,
f a local section of OS , s a local section of V.

(X–1)
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This is an example of a holomorphic connection:

Definition 10.1. Let V be an OS-module on an n-dimensional complex man-
ifold S. A holomorphic connection on V is a CS-linear map r : V !
⌦1

S
⌦OS V such that the Leibniz rule (X–1) holds. A local section m of V with

r(m) = 0 is called horizontal. We use the notation Vr for Ker(r).

Note that in this definition V is not supposed to be locally free. We just need
a sheaf of OS-modules. If however V is locally free of finite rank, like for
ordinary connections (see § B.3.3) we can describe the local structure of a
holomorphic connection with respect to a frame {ej}, say on a polycylinder
U ⇢ C

n by the formula r(ej) =
P

m

i=1
!ij ⌦ ei. The connection matrix is

the matrix of holomorphic 1-forms on U given by

!U = (!ij)

The derivative r(s) of an arbitrary holomorphic section s =
P

m

j=1
gjej is

r(s) =
P

m

j=1
dgj ⌦ ej +

P
m

i,j=1
gj!ij ⌦ ei, which can be abbreviated as

r|U = d + !U . (X–2)

From Leibniz’ rule (X–1) it follows that the di↵erence between two holomor-
phic connections on the same OS-module V is an OS-linear endomorphism of
V. So the holomorphic connections on V form an a�ne space under the vector
space EndOS (V) (unless no connection on V exists).

As with ordinary connections, we may extend r to ⌦p(V) and use this to
define the curvature:

Definition 10.2. Let (V,r) be an OS-module with a connection. We let
⌦p

S
(V) := ⌦p

S
⌦V. Cup product of holomorphic di↵erential forms defines OS-

linear maps ^ : ⌦p

S
⌦⌦q

S
(V)! ⌦p+q

S
(V) inducing

r(p) : ⌦p

S
(V)! ⌦p+1

S
⌦ V

! ⌦m 7! d! ⌦m + (�1)p! ^rm

1) The curvature of the connection is the map

Fr :=r(1)�r : V ! ⌦2

S
(V) .

One easily checks that Fr is an OS-linear map. The connection r is called
flat or integrable if its curvature is zero.
2) Since for an integrable connection the composition r(p)�r(p�1) is zero,
putting dS = dim S, we can speak of its De Rham complex:

⌦•

S
(V) :=

⇥
0! V r��! ⌦1

S
⌦ V r

(1)

���! · · · r
(dS)

����! ⌦dS
S
⌦ V

⇤
. (X–3)
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Suppose that we have a vector bundle V of finite rank m. In terms of a local
frame e1, . . . , em of sections of V|U , using (X–2) we find that the curvature is
given by the m⇥m matrix

FU = d!U � !U ^ !U

of holomorphic two-forms where we write (! ^ !)ij =
P

s

k=1
!ik ^ !kj . Thus

integrability of the connection is expressed as

!U ^ !U = d!U .

Clearly, if (V,r) comes from a local system V on S, then r is integrable.
Indeed, locally such (V,r) is isomorphic to a direct sum of a finite number
of copies of (OS , d) and the holomorphic Poincaré lemma shows that in that
case, the de Rham complex ⌦•

S
(V) is a resolution of V. In fact the converse

holds:

Theorem 10.3. Let (V,r) be a holomorphic vector bundle on S with an in-
tegrable connection. Then

V :=Vr

is a local system on S and (V,r) ' V⌦C (OS , d). Moreover, r(p)�r(p�1) = 0
for all p > 0 and the de Rham complex (X–3) is a resolution of V = Ker(r).

Proof. The statement about the de Rham complex clearly follows from the
other statements. The fact that V is a local system on S and (V,r) ' V⌦C

(OS , d) is classical: the integrability of the connection enables one to show
that the solutions of r(s) = 0 form locally on S a vector space of dimension
equal to the rank of V. For a proof see e. g. [Pham, p. 74]. ut

Corollary 10.4. For any complex manifold S one has an equivalence of cat-
egories between the category of complex local systems on S and the category
of holomorphic vector bundles on S with an integrable connection.

Remark 10.5. This result can be viewed as a prototype of the Riemann-Hilbert
correspondence which will be treated later in generality (Theorem 11.7 and
13.64).

10.2 Abstract Variations of Hodge Structure

Definition 10.6. Let S be a complex manifold. A variation of Hodge
structure of weight k on S consists of the following data:
1) a local system VZ of finitely generated abelian groups on S;
2) a finite decreasing filtration {Fp} of the holomorphic vector bundle V :=
VZ ⌦Z OS by holomorphic subbundles (the Hodge filtration).

These data should satisfy the following conditions:
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1) for each s 2 S the filtration {Fp(s)} of V(s) ' VZ,s ⌦Z C defines a Hodge
structure of weight k on the finitely generated abelian group VZ,s ;
2) the connection r : V ! V ⌦OS ⌦

1

S
whose sheaf of horizontal sections is VC

satisfies the Gri�ths’ transversality condition

r(Fp) ⇢ Fp�1 ⌦⌦1

S
. (X–4)

The notion of a morphism of variations of Hodge structure is defined
in the obvious way.

Given two variations V, V
0 of Hodge structure over S of weights k and k0, there

is an obvious structure of variation of Hodge structure on the underlying local
systems of V⌦ V

0 and Hom(V, V0) of weights k + k0 and k � k0 respectively.

Examples 10.7. 1) Let V be a Hodge structure of weight k and s0 2 S a base
point. Suppose that one has a representation ⇢ : ⇡1(S, s0)! Aut(V ). Then
the local system V(⇢) associated to ⇢ underlies a locally constant variation
of Hodge structure. In this case the Hodge bundles Fp are even locally
constant, so that r(Fp) ⇢ Fp ⌦⌦1

S
. This property characterizes the local

systems of Hodge structures among the variations of Hodge structure. In
case ⇢ is the trivial representation, we denote the corresponding variation
by V

S
.

2) Let f : X ! S be a proper and smooth morphism between complex alge-
braic manifolds. By Theorem C.10 such a morphism is locally di↵erentiable
trivial. Therefore the cohomology groups Hk(Xs) of the fibres Xs fit to-
gether into a local system. By the fundamental results of Gri�ths [Grif68]
this local system underlies a variation of Hodge structure on S such that
the Hodge structure at s is just the Hodge structure we have on Hk(Xs).
Such variations are called geometric variations. Below we sketch a proof
of these results: Theorem 10.30 implies holomorphicity of the Hodge flag
and Theorem 10.31 states the transversality property.

Definition 10.8. A polarization of a variation of Hodge structure V of
weight k on S is a morphism of variations

Q : V⌦ V! Z(�k)
S

which induces on each fibre a polarization of the corresponding Hodge struc-
ture of weight k.

Suppose that S is a complex manifold. Then the De Rham complex ⌦•

S
is

a resolution of the constant sheaf C
S
. If V is a local system underlying a

variation of Hodge structure, and (V,r) associated vector bundle equipped
with its integrable connection, we can transport the Hodge filtration to the
complex ⌦•

S
(V) by putting

F p(⌦•) :=
h
0! F pV r��! ⌦1 ⌦ Fp�1V ! . . .

i
(X–5)
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There also is a natural map

↵ : VZ ! ⌦•(V) (X–6)

which becomes a quasi-isomorphism after tensoring with C. So we have all the
ingredients for a Hodge complex of sheaves. Indeed, we have [Zuc79, Theorem
2.9]:

Proposition 10.9. Suppose S is a compact Kähler manifold and let (V,F•)
be a polarizable variation of Hodge structures of weight k on S. Then the above
data (X–5) and (X–6) define a Hodge complex of sheaves (VZ, (⌦•

S
(V),↵) of

weight k on S.

The existence of a polarization imposes strong restrictions on the under-
lying local system of a variation of Hodge structure.

Example 10.10. Let V be a polarized variation of Hodge structure on a con-
nected complex manifold which is purely of type (p, p). The polarization being
definite, the isometry group of the lattice is finite so that V has a finite mon-
odromy group.

In the geometric setting of a smooth projective family f : X ! S the The-
orem of the Fixed Part 4.23 states that invariant classes are all restrictions of
classes on a smooth compactification X̄ of X. In terms of of Hodge structures
this implies that the invariant classes inside Hk(Xs; Q) form a Hodge sub-
structure, since the restriction map Hk(X̄; Q)! Hk(Xs; Q) is a morphism of
Hodge structures. In the abstract setting this remains true:

Theorem 10.11. Let V be a variation of Hodge structure of weight k on
a complex manifold S which is Zariski open in a compact complex manifold.
Then H0(S, V) admits a Hodge structure of weight k. The evaluation map at a
point s 2 S gives an isomorphism of H0(S, V) with the subspace of Vs left fixed
by the action of ⇡1(S, s). The inclusion of this subset into Vs is a morphism
of Hodge structures. In other words, the variation of Hodge structure on V

restricts to a constant variation of Hodge structure on its maximal constant
local subsystem.

This follows immediately from [Sch73, Theorem 7.22] stating that the (p, q)-
components of a flat global section of V are themselves flat.

This theorem has the following obvious, but interesting consequence:

Corollary 10.12. If a 2 H0(S, V) has Hodge type (p, q) at some point s 2 S,
it has Hodge type (p, q) everywhere.

We conclude:

Theorem 10.13. The category of polarizable variations of Q-Hodge struc-
tures on a given manifold, Zariski-open in a compact complex manifold is
semi-simple.
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Proof. Suppose that V
0 is a subvariation of V and suppose that V is polarized.

For every s 2 S the Hodge structure Vs is polarized, and if V
0
s

is a Hodge sub-
structure of Vs, this polarization induces an orthogonal projector in End(Vs)
with image equal to V

0
s
. This projector commutes with the monodromy action

since V
0 is a subsystem of V and so defines a projector p 2 End(V). Since it is

of type (0, 0) at the point s, it is everywhere of type (0, 0), i.e. p 2 EndVHS(V).
It follows that V = V

0 � V
00, V

00 = Im(1l� p). ut

Let us now consider a variation of Hodge structure of even weight k = 2p
over any smooth connected complex base S together with some section v of
VZ on the universal cover of S. Let Yv be the locus of all s 2 S where some
determination v(s0), s0 7! s is of type (p, p). This locus is a countable union of
analytic subvarieties of S since the condition to belong to the Hodge bundle
Fp is analytic and a local section v of VZ is a Hodge vector in Vs precisely
when v(s) 2 Fp. In case Yv 6= S we call v special. The union of all Yv, with
v special forms a thin subset of S. We call s 2 S very general with respect
to V if it lies in the complement of this set. The very general points of S with
respect to V form a dense subset. Now, if s 2 S is very general, by definition
any Hodge vector in Vs extends to give a multivalued horizontal section of V

everywhere of type (p, p).
We can now show how the monodromy group is related to the Mumford-

Tate group of the Hodge structure at a very general s 2 S using the character-
ization (Theorem 2.15) of MT(Vs) as the largest rationally defined algebraic
subgroup of GL(Vs)⇥ C

⇤ fixing the Hodge vectors in V
m,n

s
(p), for all triples

(m, n, p) with (m � n)k � 2p = 0. So we look at s 2 S which is very general
for all local systems V(m, n)(p) with (m�n)k� 2p = 0. Then there is a local
system H(m, n, p) on S whose stalk at s is Hodge(Vm,n

s
(p)). Using this we

deduce:

Proposition 10.14. Let S be a smooth complex variety. For very general
s 2 S a finite index subgroup of the monodromy group is contained in the
Mumford-Tate group of the Hodge structure on Vs.

Proof. The Hodge structure on H(m, n, p)s is polarizable and so there is a pos-
itive definite quadratic form on this space invariant under monodromy. Hence
the monodromy acts on H(m, n, p) through a finite group. Since the Mumford-
Tate group is algebraic, the Noetherian property then implies that finitely
many triples (m, n, p) determine the Mumford-Tate group and so a finite in-
dex subgroup ⇡0 of the fundamental group has its image in the Mumford-Tate
group. ut

In case S is quasi-projective and V the local system R2df⇤Q
X

of the rank
2d-cohomology groups of the fibres of a smooth algebraic family f : X ! S,
the validity of the Hodge conjecture would imply that analytic sets Yv in fact
are algebraic. Surprisingly this has been proved recently; it is a consequence
of the following result due to Cattani, Deligne and Kaplan [C-D-K] which we
quote without giving the proof.
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Theorem 10.15. Fix a natural number m. Suppose that we have a polarized
variation (V, Q) of even weight k = 2p on a compactifiable S ⇢ S whose
compactifying divisor has normal crossings. Define

S(m) = {(s, v) | s 2 S, v 2 (VZ)s is a Hodge vector and Q(v, v)  m}.

Then the image of the projection of S(m) onto S is a finite disjoint union of
analytic subspaces of S which, locally at every boundary point p 2 S � S, are
traces of analytic subvarieties defined in an open neighbourhood of p inside S.

As we noted before, the fact that the projection of S(m) onto S consists
of a finite disjoint union of analytic subspaces of S is not hard; the di�cult
point is the assertion about the behaviour near the boundary.

This theorem can indeed be applied to the geometric setting of a smooth
algebraic family f : X ! S where X and S are quasi-projective. The vector
bundle V = := V ⌦Q OS where V = R2df⇤Q

X
is an algebraic vector bundle

and the Hodge filtration gives algebraic subbundles. The locus of Hodge
classes is the collection of vectors vt in the fibre at t 2 S of F dV which define
Hodge classes in H2d(Xt; C). By Theorem 10.15 the locus of Hodge classes
is algebraic in the sense that the component containing a given Hodge class
v 2 H2d(Xt; C) is an algebraic subvariety of F dV. It is called the locus of
the Hodge class v. Its projection onto S is one of the components of S(m)

figuring in the preceding theorem, where m = Q(v, v).

Remark. Recently C. Voisin [Vois07] applied this theorem to absolute Hodge
classes (Def. 2.37). To explain this, any projective manifold X is defined over a
field k which is of finite transcendence degree over Q, say k = Q(a)(t1, . . . , ts)
with a algebraic over Q and the tj transcendent. So X can be considered as a
fibre of a family Y ! S, defined over Q(a), where S is a Zariski-open in some
a�ne s-space. Any irreducible cycle Z of X then can be viewed as a cycle Z̃
of Y finite over S and hence defined over a finite algebraic extension of Q. So
Z̃, the locus of the class of Z is defined over Q̄. More generally, it can be seen
to be true for the Hodge locus of an absolute Hodge cycle: such a Hodge locus
is also defined over Q̄ and the Galois conjugates of these loci are also Hodge
loci. Voisin uses this remark to show that if the Hodge conjecture holds for
absolute Hodge cycles on varieties defined over Q̄, then it hold for absolute
Hodge classes in general. Moreover, under certain genericity assumptions on
X a similar statement holds for all Hodge classes on X. So in a certain sense,
the proof of the Hodge conjecture can be reduced to varieties over Q̄; this
implies that one only has to test a countable number of cases.

10.3 Big Monodromy Groups, an Application

If V underlies a polarizable variation of Hodge structure, as we already saw
(Theorem 10.13), the monodromy representations is fully reducible. Irre-
ducible representations give indecomposable local systems. If we have
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a representation on a Q-vector space which stays irreducible under field-
extensions we say that the representation is absolutely irreducible. There
is one particular type of such representations, namely representations with
“big” monodromy group in the following sense.

Definition 10.16. Let V be a local system on a connected and locally
1-connected topological space S with monodromy representation

⇢ : ⇡1(S, s)! GL(V ), V := Vs.

1) The algebraic monodromy group Gmon is the identity component of
the smallest algebraic subgroup of GL(V ) containing the monodromy group
⇢(⇡1(S, s));
2) the monodromy group is said to be big if Gmon acts irreducibly on VC.

Remark 10.17. If ⇢ : S0 ! S is a finite unramified cover, the induced morphism
between the fundamental groups ⇢⇤ : ⇡1(S0, s0)! ⇡1(S, s), ⇢(s0) = s identifies
⇡1(S0, s0) with a normal subgroup of ⇡1(S, s) of finite index. It acts on ⇢⇤V
and the algebraic monodromy group for this action therefore is a connected
normal subgroup of Gmon of finite index and hence equals Gmon. It follows
that the property of having a big monodromy group is stable under finite
unramified coverings.

To determine algebraic monodromy, we use the following criterion, due to
Deligne [Del80]:

Criterion 10.18. Let V be a finite dimensional complex vector space of di-
mension n equipped with a non-degenerate bilinear form Q which is either
symmetric or anti-symmetric. Let M ⇢ Aut(V,Q) be an algebraic subgroup.

1) If Q is anti-symmetric we suppose that M contains the transvections T� :
v 7! v + Q(v, �)�, where � runs over an M -orbit R which spans V . Then
M = Aut(V,Q)(= Sp(V )).
2) If Q is symmetric, suppose that M contains the reflections R� : v 7!
v � Q(v, �)� in “roots” �, i.e. with Q(�, �) = 2 which form an M -orbit
spanning V . Then either M is finite or M = Aut(V,Q)(= O(V )).

Examples 10.19. 1) Let V = VZ⌦C, where VZ is a free finite rank Z-module
equipped with a non-degenerate anti-symmetric bilinear form. The Zariski-
closure inside Sp(V ) of the group Sp(VZ) of symplectic automorphisms of
the lattice VZ is the full group Sp(V ). This follows from the fact that
Sp(VZ) contains all symplectic transvections Tv, v 2 VZ and for given non-
zero � 2 VZ, the elements Tv�, v 2 VZ span already V . It follows that the
Zariski-closure of any subgroup of finite index in Sp(VZ) is also the full
symplectic group, hence is big.
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2) Let V = VZ ⌦ C, where VZ is a free finite Z-module equipped with a
non-degenerate symmetric bilinear form Q. If Q is definite, the orthogonal
group preserving the lattice VZ is of course finite and equals its Zariski-
closure. Hence it is never big. In general it will contain reflections R� in all
roots � 2 VZ. Assuming that these roots contain at least one orbit which
spans the lattice, we conclude in the indefinite case that the Zariski closure
of Aut(VZ, Q) is the full orthogonal group.

The fact that V underlies a variation of Hodge structure imposes severe
restrictions of Noether-Lefschetz type:

Theorem 10.20. Let there be given a (rational) polarized weight k variation
of Hodge structure over a smooth quasi-projective base S with big monodromy
group. If s 2 S is very general with respect to Hom(V, V), then Vs has no
non-trivial rational Hodge substructures.

Proof. Any projector p : Vs ! Vs onto a Hodge substructure extends to a
multivalued flat section of Hom(V, V) everywhere of type (0, 0). This flat sec-
tion generates a sub Hodge structure of type (0, 0) which by Example 10.10
has finite monodromy. By Remark 10.17 we may replace S by a finite unram-
ified cover q : S0 ! S. So, replacing S by S0, we may assume that the flat
section is uni-valued, i.e. invariant under the monodromy. This means that
the projector p intertwines every element from the monodromy group and
thus defines a sub system of V. Since the latter is irreducible, this subsystem
is either zero or all of V. ut

Remark 10.21. The proof from [Del72] asserting the truth of the theorem for
certain variations related to K3-surfaces can be applied to our setting. The
crucial result to use here is Prop. 10.14. Clearly the preceding proof is more
elementary.

We now consider the tautological families of smooth complete intersections
in projective space. We have:

Theorem 10.22. The monodromy group for the tautological family of n-
dimensional complete intersections in projective space is big except for quadrics,
cubic surfaces or even-dimensional intersection of two quadrics.

Proof. For simplicity we only consider hypersurfaces in P
n+1 (to have the

above set-up one views these as hyperplane sections of the Veronese embed-
ded P

n+1). By the Zariski-Van Kampen theorem [Kamp] (see also Prop. C.19)
we may restrict to a Lefschetz pencil and then, applying Theorem C.23, the
vanishing cocycles form (up to signs) one orbit under the monodromy group.
So, by the remarks in Example 10.19 the Zariski closure of the monodromy
group acting on the middle primitive cohomology group of Y is the full sym-
plectic group if n is odd and either finite or the full orthogonal group if n
is even. If n is even and M is finite, Q must be definite. For complete in-
tersections in projective space the variable cohomology is just the primitive
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cohomology. Then the Hodge Riemann bilinear relations tell us that the signa-
ture is (a, b) with a, b respectively, the sum of the Hodge numbers dim Hp,q

prim

with p even, odd respectively. Since (2m)-dimensional hypersurfaces always
have Hm,m

prim
6= 0, one deduces that the form Q can only be definite if all Hodge

numbers hp,q with p 6= q are zero. It is easy to see that this only happens for
d = 2 or for cubic surfaces. For the case of complete intersections, see [Del73].
ut

Using Theorem 10.20 and Theorem 10.22 we deduce:

Corollary 10.23. Except for quadric hypersurfaces, cubic surfaces and even-
dimensional intersections of two quadrics, the generic stalk of the tautological
variation of Hodge structures on primitive cohomology for smooth complete in-
tersections in complex projective space does not contain non-trivial sub Hodge
structures.

10.4 Variations of Hodge Structures Coming From

Smooth Families

The Gri�ths transversality condition is inspired by the geometric case. See
Theorem 10.31. We are now going to regard this more in detail. Let us consider
a proper morphism f : X ! S of complex manifolds of maximal rank and
such such that X is bimeromorphic to a Kähler manifold. By the results of
§ 2.3 the cohomology groups of any compact complex submanifold of X admit
a strong Hodge decomposition. In particular this applies to the fibres of f .
We use the (standard) notation

Xs = f�1(s)
ms ⇢ OS,s the maximal ideal
(s) = OS,s/ms the residue field.

By the topological proper base change theorem (cf. [Gode, p. 202]) applied
to f , the stalks at s 2 S of the local systems Rqf⇤ZX

and Rqf⇤CX
can be

written
Rqf⇤ZX,s

' Hq(Xs); Rqf⇤CX,s
' Hq(Xs; C).

The sheaf of relative De Rham cohomology group

Hq

DR
(X/S) :=Rkf⇤C⌦C OS ,

is locally free and

Hk

DR
(X/S)s ⌦ (s) ' Rkf⇤CX,s

' Hk(Xs; C).
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Proposition-Definition 10.24. Let f : X ! S be as above. The Gauss-

Manin connection rGM on Hq

DR
(X/S) is the flat connection whose sheaf of

locally constant sections is Rqf⇤CX
. This is a locally constant sheaf whose fibre

at s 2 S is Hq(Xs; C). The Gauss-Manin connection is the natural connection
on Rqf⇤f�1OS coming from d : f�1OS ! f�1⌦1

S
.

Proof. Taking the q-th direct image of the exact sequence

0! f�1
C

S
! f�1OS

d�! f�1⌦1

S

d�! f�1⌦2

S

one finds on S the exact sequence

0! Rqf⇤f
�1

C
S
! Rqf⇤f

�1OS

r��! Rqf⇤f
�1⌦1

S

r��! Rqf⇤f
�1⌦2

S
,

where we have abbreviated rGM = r. Hence r�r = 0, i.e. r is a flat
connection. Since its locally constant sections generate the sheaf Rqf⇤f�1

C
S
,

this identifies r with the unique flat connection on Rqf⇤f�1OS whose sheaf
of locally constant sections is Rqf⇤f�1

C
S
. ut

We next introduce the relative De Rham complex. It comes from the exact
sequence defining the bundle of relative one-forms

0! f⇤⌦1

Y
! ⌦1

X
! ⌦1

X/Y
! 0. (X–7)

So, the bundle of relative 1-forms has rank

dX/Y := dimX � dim Y

and we let

⌦p

X/Y
:=

p^

OX

⌦1

X/Y
. (X–8)

These locally free sheaves form a complex, the relative de Rham complex. We
give a slightly more general definition of this complex.

Definition 10.25. Let f : X ! Y be a holomorphic map between complex
spaces. The relative de Rham complex of f , denoted by ⌦•

X/Y
, is the

quotient of the Kähler de Rham complex ⌦•

X
(see (VII–6)) by the subcomplex

generated locally by forms f⇤(⌘)^ ! where ⌘ is a local section of ⌦1 and ! a
local section of ⌦•�1

X
:

⌦p

X/Y
=

⌦p

X

f⇤⌦1

Y
^⌦p�1

X

.

If X and Y are smooth and f is of maximal rank, then this is consistent
with (X–7) and (X–8): in suitable local coordinates on X and Y the map f
has the form

(z1, . . . , zn) 7! (z1, . . . , zk)
with n = dim(X), k = dim(Y ) so that ⌦•

X/Y
is locally isomorphic to the

exterior algebra over OX on the generators dzk+1, . . . , dzn.
We cite without proof the following alternative description of Hk

DR
(X/S)

in terms of the relative de Rham complex (see [Del70, Prop. I.2.28.]).
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Theorem 10.26. Let f : X ! S be a proper and smooth holomorphic map
between complex manifolds, let q 2 N and let V be a local system of complex
vector spaces on X. There is a natural isomorphism

OS ⌦C Rqf⇤V ' Rqf⇤(⌦•

X/S
⌦C V).

Corollary 10.27. With notation as above, for each q 2 N we have an iso-
morphism

Hq

DR
(X/S) ' Rqf⇤(⌦•

X/S
).

Let us give a description of the connection on Hq

DR
(X/S) in these terms.

First we observe, that for any sheaf F of C-vector spaces on S and each q 2 N

we have a canonical isomorphism

Rqf⇤CX
⌦CS

F
⇠�! Rqf⇤f

�1F.

Indeed, this can be verified on the stalks. In particular, for F = OS , using
that ⌦•

X/S
is a resolution of f�1OS , one has

Rqf⇤CX
⌦CS

OS ' Rqf⇤f
�1OS ' Rqf⇤⌦

•

X/S
.

The Gauss-Manin connection can be described in terms of the relative De
Rham complex as follows. Define the Koszul filtration

Kozq ⌦•

X
= f⇤⌦q

S
^⌦•�q

X
. (X–9)

This is a subcomplex of ⌦•

X
for each q and one has

Grq

Koz
⌦•

X
' f⇤⌦q

S
⌦OX ⌦•

X/S
[�q],

hence a short exact sequence

0 �! Gr1
Koz

�! Koz0 / Koz2 �! Gr0
Koz

. �! 0�� ��
f⇤(⌦1

S
)⌦⌦•

X/S
[�1] ⌦•

X/S

(X–10)

If dim S = 1 this sequence reduces to the self-evident exact sequence

0! f⇤(⌦1

S
)⌦⌦•

X/S
[�1]! ⌦•

X
! ⌦•

X/S
! 0. (X–11)

Theorem 10.28. The Gauss-Manin connection rGM is the connecting ho-
momorphism

Rqf⇤Gr0
Koz

@�! Rq+1f⇤Gr1
Koz�� ��

Rqf⇤⌦•

X/S

r
GM

����! ⌦1

S
⌦OS Rqf⇤⌦•

X/S

in the long exact sequence obtained by applying Rf⇤ to the exact sequence
(X–10).
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For a proof, we refer to [Katz-Oda].
We now study the Hodge filtration on Rqf⇤⌦•

X/S
; it is obtained as fol-

lows. The relative de Rham complex inherits the trivial filtration � from the
absolute de Rham complex. We define

F pRqf⇤⌦
•

X/S
= Im

h
Rqf⇤�

�p⌦•

X/S
! Rqf⇤⌦

•

X/S

i
(X–12)

We first remark that Proposition 2.22 has a relative analogue:

Proposition 10.29. The spectral sequence

0Ep,q

1
= Rqf⇤⌦

p

X/S
=) Rp+qf⇤⌦

•

X/S
= Hp+q

DR
(X/S)

degenerates at E1.

To prove this, we use Grauert’s base change theorem [Gr60]:

Theorem 10.30. Let f : X ! S be a proper holomorphic map with S reduced
and connected, and F a coherent OX-module, flat over f�1OS. Then for
all p 2 Z the function s 7! dim H

p(Xs,F ⌦ OXs) is upper semicontinuous.
Moreover the following are equivalent:

1) s 7! dim H
p(Xs,F ⌦OXs) is a constant function on S;

2) Rpf⇤F is a locally free OS-module and for all s 2 S the natural map

Rpf⇤F ⌦ (s)! Hp(Xs,F ⌦OXs)

is an isomorphism.

Proof (of 10.29). For each s 2 S we have ⌦p

X/S
⌦OX OXs ' ⌦p

Xs
. The func-

tions s 7! hp,q(s) = dimHq(Xs,⌦
p

Xs
) are upper semicontinuous on S and

bn(Xs) =
P

p+q=n
hp,q(s) is constant on S. Therefore s 7! hp,q(s) is constant

on S, the sheaves Rqf⇤⌦
p

X/S
are locally free on S and the natural maps

Rqf⇤⌦
p

X/S
⌦ (s)! Hq(Xs,⌦

p

Xs
)

are isomorphisms for all p, q. By decreasing induction on p one proves that the
sheaves F pRqf⇤⌦•

X/S
are locally free on S and that their formation commutes

with base change as well. Proposition 10.29 follows immediately from this.
Moreover, the natural mappings F pRqf⇤⌦•

X/S
! Rqf⇤⌦•

X/S
are injective for

all p. ut

We now can prove :

Corollary 10.31 (Griffiths’ transversality theorem). The Gauss-
Manin connection has the property

rGM(F pHk) ✓ ⌦1

S
⌦ F p�1Hk .
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Proof. This follows from the filtered version of (X–10)

0! f⇤⌦1

S
⌦ ��p�1⌦•

X/S
[�1]! ��p(Koz0 / Koz2)! ��p⌦•

X/S
! 0

after applying Rf⇤:

F pRkf⇤(⌦•

X/S
) @�! F p�1Rkf⇤(f⇤⌦1

S
⌦⌦•

X/S
)����

����

F pHk r
GM

����! ⌦1

S
⌦ F p�1Hk ut

Corollary 10.32. Let f : X ! S be a proper and smooth holomorphic map
between complex manifolds, let q 2 N. Suppose that X is bimeromorphic to
a Kähler manifold. Then, with the Hodge filtration (X–12), the local system
Rqf⇤ZX

underlies a variation of Hodge structure.



11

Degenerations of Hodge Structures

Usually, families come with singular fibres and it is very interesting to investigate
what happens near such a fibre. In this monograph we mostly consider 1-parameter
degenerations, where the base is a punctured disk and the family is smooth over the
punctured disk �

⇤ = ��{0}. The flat connection on any of the local systems coming
from the cohomology of the smooth fibres over �

⇤ acquires a logarithmic singularity
and its residue is intimately related to the monodromy around the singular fibre. We
explain this in the abstract setting in §11.1.1; this leads directly to a first version of
the Riemann-Hilbert correspondence. A full version will be given in § 13.6.3.

What happens in the geometric setting is a concretization of results by Schmid
who studied abstract degenerations of variations of Hodge structure in his funda-
mental study [Sch73]; we state his results in § 11.2.1 without giving proofs. The
main result of this Chapter, the description of the limit mixed Hodge structure in
the geometric setting is Theorem 11.22. As a consequence of the proof, in § 11.3.1
various other central results are derived: the local monodromy theorem and the local
invariant cycle theorem. We also show that a variant of the Wang sequence is exact
as a sequence of mixed Hodge structures, and we explain the Clemens-Schmid exact
sequence. We close with a section containing some concrete examples of degenera-
tions where the reader can appreciate the strength of these theorems.

11.1 Local Systems Acquiring Singularities

11.1.1 Connections with Logarithmic Poles

Let X be a complex manifold and let D ⇢ X be a divisor which locally looks
like the crossings of some coordinate hyperplanes. In § 4.1 we called this a
normal crossing divisor. And if the irreducible components are smooth, it was
called a simple normal crossing divisor.

Definition 11.1. Let V be a holomorphic vector bundle on X and let r be
a connection of V|U . Then r is said to have logarithmic poles along D if
it extends to a morphism
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r : V ! ⌦1

X
(log D)⌦OX V (XI–1)

which satisfies Leibniz’ rule (X–1).

Suppose that D has simple normal crossings. For any irreducible compo-
nent Dk of D the Poincaré residue map Rk along Dk is defined as follows. In
a coordinate chart with coordinates z1, . . . , zn such that z1 = 0 is an equation
for Dk, writing ! 2 ⌦1(log D) locally as ! = ⌘ ^ (dz1/z1) + ⌘0 with ⌘, ⌘0 not
containing dz1, the Poincaré residue map can be defined as

Rk : ⌦1

X
(log D)! ODk

! 7! ⌘
��
Dk

.

In particular Rk(dz1) = 0 and Rk(z1 · !) = 0, where ! is a local section of
⌦1(log D). So for local sections f, m of OX(�Dk) and V respectively one has
r(fm) = df⌦m+frm 2 Ker(Rk⌦1). This implies that the map (Rk⌦1)�r
induces an ODk -linear endomorphism

resDk(r) 2 End(V ⌦ODk), (XI–2)

called the residue of the connection along Dk. If Dk is compact, the char-
acteristic polynomial of resDk(r) has constant coe�cients (because these are
global holomorphic functions on Dk).

Consider the special case where X is the unit disk � in the complex plane
and D is the origin. We let �⇤ := �� {0} and let T denote the monodromy
automorphism of (V|�⇤)r determined by a counter-clockwise loop around 0.
We let

h :={u 2 C | Im(u) > 0}

be the upper half plane, which is the universal covering space of �⇤ via the
map

e : h! �⇤

u 7! e2⇡iu.

Proposition 11.2. T can be extended to an automorphism of V whose re-
striction T0 to V(0) is given by

T0 = exp(�2⇡i res0(r)).

This is classical. For proofs see [Del70, Thm II, 1.17] or [Ku, Prop. 8.7.1].
On the other hand, for every module (V,r) on �⇤ equipped with an

integrable connection there exist extensions to a logarithmic connection over
�. Fix a section of the projection C! C/Z, say

⌧ : C/Z! C. (XI–3)
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For instance, we may demand that the real part of ⌧(z) is in the interval [0, 1)
or [�1, 0). Any choice of ⌧ determines a branch of the logarithm as follows.
The multivalued function log z

2⇡i
is univalent on C/Z and so

log
⌧
(z) := 2⇡i⌧

✓
log z

2⇡i

◆
(XI–4)

is indeed univalent on C.

Proposition 11.3. Let (V,r) be a holomorphic vector bundle on �⇤ equipped
with an integrable connection. There exists a unique extension Ṽ(⌧) of V to a
vector bundle on � such that r extends to a logarithmic connection r̃(⌧) on
Ṽ(⌧) whose residue at 0 has its eigenvalues in the image of ⌧ . Moreover, we
can choose a trivialization of Ṽ(⌧) by a frame such that the transition matrix
of this frame to a multivalued locally constant frame on �⇤ is meromorphic
on �, i.e without essential singularities at 0.

This proposition is due to Manin [Ma]. Following [Del70, pp. 91-95], we
give a brief
Sketch of the proof. Introduce the canonical fibre

V1 :=H0(h, e⇤V)r, (XI–5)

the C-vector space of multivalued horizontal sections of V.
i) Unipotent monodromy. We put

N = � 1
2⇡i

log T =
1

2⇡i

X

k>0

(I � T )k/k.

For any holomorphic section v of e⇤V we define a new holomorphic section
'(v) by the rule

'(v)(u) = [exp(2⇡iuN)]v(u) =
X (2⇡i)k

k!
ukNkv(u). (XI–6)

If v 2 V1 it transforms through the rule v(u+1) = Tv(u), so '(s) is invariant
under u 7! u+1 and hence descends to a section of V|�⇤ . So, with j : �⇤ ,! �
the inclusion, '(V1) ⇢ H0(�, j⇤V and we set

Ṽ :='(V1)⌦C O� ⇢ j⇤V.

We have

r ('(v)u) = 2⇡iN ['(v)]⌦ du = 2⇡iN ['(v)]⌦ e⇤
✓

dt

t

◆
,

and so we obtain a logarithmic connection r̃ on Ṽ with residue N at 0. The
above extension corresponds to the special case where ⌧(0) = 0. It has a
special name:
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Definition 11.4. The canonical extension (Ṽ, r̃) of V is the unique exten-
sion for which the residue of r̃ at 0 has eigenvalues in the interval [0, 1).

Other extensions corresponding to liftings ⌧ are obtained replacing N by N +
⌧(0)I. In t-coordinates on the unit disk, using the notation (XI–4), we then
have

'⌧ (v)(t) = t⌧(0) · exp(2⇡i log
⌧

t)[Nv(t)]. (XI–7)

For later reference we note that ' gives and explicit identification of the stalk
of the canonical extension with the C-vector space of multivalued horizontal
sections:

' : V1
⇠�! Ṽ(0). (XI–8)

In particular a frame for the right hand side gives a holomorphic trivialization
of Ṽ near 0.
ii) General case. The monodromy T acts on any fibre V of the vector bundle
V|�⇤ and we have a decomposition V =

L
V� into generalized eigenspaces V�

on which T � �I acts nilpotently. Hence ��1T acts unipotently on V�. The
vector spaces V� over the di↵erent points of �⇤ define a sub bundle to which
the previous analysis applies leading to a decomposition

V '
M

�

(U� | �⇤)⌦ V�

where now � runs over all the eigenvalues of T . On the subbundle V� we have
unipotent monodromy given by ��1T and U� is the module O� trivialized by
taking a flat frame for it and twisting with the function u 7! ��u ensuring that
the monodromy on it is multiplication by �. On U� we also have a connection

f 7! df + ⌧(�)f
dt

t
. Then we put Ṽ(⌧) =

L
�

U� ⌦ Ṽ�(⌧). ut

Remark 11.5. Essentially the same proof can be applied in the situation where
one is given a vector bundle equipped with an integrable connection on X�D,
X a smooth complex manifold and D a normal crossing divisor. The result
is that, provided all local monodromy-operators along the branches of D are
quasi-unipotent, given ⌧ , V extends to an essentially unique locally free OX -
module Ṽ(⌧) equipped with a connection having logarithmic poles along D
such that the eigenvalues of the residues in the image of ⌧ . See [Malg79,
Theorem 4.4].

11.1.2 The Riemann-Hilbert Correspondence (I)

We follow Malgrange’s exposition [Bor87, IV]. Let us start with one variable;
� ⇢ C is a disk in the t-plane centred at 0, and V is a local system of C-vector
spaces on the punctured disk �⇤, say of dimension m. Choose a multivalued
flat frame {e1, . . . , em} for V over a possibly smaller punctured disk centred
at 0, still denoted �⇤. Then the connection matrix (X–2) of the integrable
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connection is holomorphic on �⇤, but may have an essential singularity at
0. We have seen (Prop. 11.3) that V := V ⌦C O�⇤ extends to a holomorphic
vector bundle Ṽ on � trivialized by a holomorphic frame in which the connec-
tion matrix has a simple pole. In particular (V,r) extends to a logarithmic
connection on Ṽ. Observe that this also shows that the transformation matrix
which transforms the new in the old frame in general has at most a pole at 0,
i.e. the new frame is still a meromorphic frame for V. We say therefore that
the bundle Ṽ is a meromorphic extension of V and that r is regular with
respect to Ṽ. So in dimension 1 “regular” with respect to a given extension
just means that r extends with logarithmic poles. Before discussing the sev-
eral variables setting, we change our point of view a little making use of the
sheaf

O�(⇤0) = O�[t�1]
of meromorphic functions on � which are holomorphic on �⇤. A choice of
frame v for the space V1 of multivalued flat sections, by (XI–8) gives a
holomorphic frame v(t) for Ṽ near the origin. In this frame, the connection
matrix has entries in O�(⇤0). Regularity means that these entries have a pole
of order at most 1. The extension Ṽ corresponds to the branch of the logarithm
determined by (XI–4) after choosing the section ⌧ with ⌧(0) = 0. Any other
choice of ⌧ with ⌧(0) = k defines the extension (Ṽ(⌧), r̃) and (XI–7) shows
that the trivializing frame v(t) must be replaced by tkT�kv(t). This shows
that have Ṽ ⌦O�(⇤0) =

S
⌧
Ṽ(⌧).

We now pass to several variables. Our point of departure is a complex
manifold X, a (possibly reducible) hypersurface D ⇢ X and a vector bundle
V over X � D. Let j : X � D ,! X be the inclusion. Consider locally free
OX -submodules of j⇤V which restrict to V on X � D. Two such extensions
Ṽ1 and Ṽ2 are called equivalent if locally on X there exist natural numbers
a and b such that Ia

D
Ṽ1 ⇢ Ṽ2 and Ib

D
Ṽ2 ⇢ Ṽ1. An equivalence class of such

modules is called a meromorphic structure on V. As in the 1-variable case,
let OX(⇤D) be the sheaf of meromorphic functions on X whose restriction to
X �D is holomorphic. Then

Ṽ(⇤D) := Ṽ ⌦OX OX(⇤D)

only depends on the meromorphic structure defined by Ṽ.
Suppose now that D has normal crossings and that (V,r) is an integrable

connection. By Remark 11.5 there always exists a locally free extension Ṽ
of V such that r extends with logarithmic poles along D. Any section ⌧ of
C! C/Z defines a locally free extension Ṽ(⌧) of V and two sections ⌧,� define
two extensions Ṽ(⌧) and Ṽ(�) which are equivalent. The sheaf Ṽ(⌧)(⇤D) does
not depend on the choice of ⌧ ; indeed, we have

Ṽ(⇤D) :=
[

⌧

Ṽ(⌧). (XI–9)

The resulting meromorphic structure on V is the unique meromorphic struc-
ture containing lattices like Ṽ(⌧) such that r extends to a meromorphic con-
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nection with a logarithmic pole of order one. The pair (Ṽ,r) is called a
regular meromorphic extension of (V,r).

Remark 11.6. If X is an algebraic variety and V is an algebraic vector bundle
on X �D, for all coherent Ṽ extending V one has Ṽ(⇤D) = j⇤V. Hence j⇤V
determines a unique meromorphic structure; if r is an algebraic connection
on V, it is regular if the analytic counterpart of V(⇤D) is the extension defined
by (XI–9). Regularity does not depend on the chosen compactification of
X � D. We can also test regularity using algebraic curves C mapping to
X, say u : C ! X such that u(C) 6⇢ D. Then the connection is regular if
u⇤r is regular at all points C \ u�1D where u⇤r is defined as follows. Let
x1, . . . , xn be local coordinates centred at u(0) = y and let ṽ be a local section
of Ṽ. If r(ṽ) =

P
n

i=1
dxi ⌦ vi, vi 2 Ṽ(y). and ui(t) = xi

�u(t) set

(u⇤r)u⇤ṽ :=
nX

i=1

dui ⌦ u⇤(vi). (XI–10)

It is not hard to verify that this definition does not depend on the choice of
local coordinates, but only on u⇤ṽ and that it indeed gives a connection on
the vector bundle u⇤(Ṽ)|�⇤.

We can now explain a first version of the Riemann-Hilbert correspondence
as stated and proven in [Bor87, IV].

Theorem 11.7 (Riemann-Hilbert correspondence (first version)). Let
X be a complex manifold and D a divisor with normal crossings.

1) The assignment

(Ṽ,r) 7! (V,r) = (Ṽ,r)
���
X�D

gives an equivalence
8
<

:

regular meromorphic extensions to X
of vector bundles on X�D equipped
with an integrable connection

9
=

; !

8
<

:

vector bundles on X�D
equipped with an inte-
grable connection

9
=

;.

2) If U is a smooth complex algebraic variety, the assignment

(V,r) 7! (Van,r)

gives an equivalence

⇢
algebraic regular integrable connections
on algebraic vector bundles on U

�
 !

8
<

:

vector bundles on U
equipped with an inte-
grable connection

9
=

;.
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11.2 The Limit Mixed Hodge Structure on Nearby Cycle

Spaces

11.2.1 Asymptotics for Variations of Hodge Structure over a
Punctured Disk

Let V be local system of finite rank Z-modules on the punctured disk �⇤

underlying a polarized variation of Hodge structure of weight k, and let t be
the standard coordinate on the disk. The monodromy is quasi-unipotent by
the following theorem due to Borel [Sch73, Lemma 4.5, Thm 6.1]:

Theorem 11.8 (Monodromy theorem). Let V be a polarized variation of
Hodge structure on the punctured disk �⇤. Then the monodromy operator T is
quasi-unipotent. More precisely: if ` = max({p� q | V

p,q

C,t
6= 0}) and T = TsTu

is the Jordan decomposition of T with Tu unipotent and Ts semisimple, then
(Tu � I)`+1 = 0 and Ts has finite order.

For the geometric case the proof that T is quasi-unipotent is rather straight-
forward. See Remark 11.20. The more subtle bound on the index of nilpotency
is Theorem 11.42 below.

We set

N = log Tu = log(I + [Tu � I]) =
X

k�1

(�1)k�1[Tu � I]k

k
. (XI–11)

Observe that convergence is immediate since the right hand side is a finite
sum.

Assume from now on that the monodromy is unipotent so that T = expN .
As before, let e : h ! �⇤, e(u) = exp(2⇡iu) be the universal cover of the
punctured unit disk. Then

V1 :=H0(h, e⇤VC)

is isomorphic to the canonical fibre at 0 of the canonical extension Ṽ of V =
V⌦ZO�⇤ . It has a logarithmic connection extending r, which has a nilpotent
residue R at 0 and we have N = �2⇡iR. The identification (XI–8) depends
on the choice of the holomorphic coordinate t and will be denoted

gt : V1
⇠�! Ṽ(0)

which we use to define an integral lattice in Ṽ(0):

Ṽ(0)Z = gt(� (h, e⇤VZ)).

The choice of a di↵erent local coordinate s on (�, 0) gives a new integral
lattice gs(� (h, e⇤VZ) related to gt(� (h, e⇤VZ)) by

gt(� (h, e⇤VZ)) = exp(2⇡i↵N)gs(� (h, e⇤VZ), ↵ =
dt

ds
(0).
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So a canonical object is the nilpotent orbit {exp(2⇡i�)gt(� (h, e⇤VZ)) | � 2
C
⇤}.

Since N is nilpotent, by [Sch73, Lemma 6.4], we have a naturally defined
weight filtration on the canonical fibre (XI–8) of V:

Lemma-Definition 11.9. Given a nilpotent endomorphism N of a finite di-
mensional vector space V , the weight filtration of N centred at k is the
unique increasing filtration W = W (N, k) of V with the properties

1) N(Wi) ⇢Wi�2, i � 2;
2) the map

N ` : GrW

k+l
V ! GrW

k�l
V

is an isomorphism for all ` � 0.

Moreover, there is a Lefschetz-type decomposition

GrW V =
L

k

`=0

L
`

r=0
Nr[PV ]k+`

with PVk+` := Ker[N `+1 : GrW

k+`
V ! GrW

k�`�2
V ].

and the endomorphism N has dim[PV ]k+` Jordan blocs of size ` + 1, ` =
0, . . . , k.

We now can formulate Schmid’s result [Sch73, Theorem 6.16]:

Theorem 11.10. The Hodge bundles Fp of V extend to holomorphic subbun-
dles F̃p of Ṽ, and the triple

V
Hdg

1
:=(Ṽ(0)Z, W•(N, k), F̃•(0))

is a mixed Hodge structure. Taking into account the ambiguity of the integral
structure, we obtain a “nilpotent orbit” of mixed Hodge structures.

The proof for the cohomology of 1-parameter degenerations is given below in
§ 11.2.7.

Remark. In Schmid’s work the notion of nilpotent orbit has a more precise
meaning reflecting the asymptotic properties of the period map.

11.2.2 Geometric Set-Up and Preliminary Reductions

We let X be a complex manifold, � ⇢ C the unit disk and f : X ! � a
holomorphic map smooth over the punctured disk �⇤. We say that f is a
one-parameter degeneration. In general X0 = f�1(0) can have arbitrarily
bad singularities, but after suitable blowings up, X0 can be assumed to have
only simple normal crossings on X. Let µ be the least common multiple of
the multiplicities of the components of the divisor X0 and consider the map
m : t 7! tµ sending � to itself. For the moment, let us denote by �0 the
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source of the map m and let W be the normalisation of the fibre product
X ⇥� �0. In general W is a V -manifold. Blowing up the singularities we
obtain a manifold X 0 and a morphism f 0 : X 0 ! �0. We call f 0 : X 0 ! �0

the µ-th root fibration of f . The fibre X 0
0

has simple normal crossings,
but unless dim X = 3, the components introduced in the last blowing up
might not be reduced. The semistable reduction theorem [K-K-M-S] states
that repeating the above procedure a finite number of times we can achieve
this:

Theorem 11.11. Let f : X ! � be as above. Then there exists m 2 N such
that for the m-th root f 0 : X 0 ! �0 of f the special fibre has simple normal
crossings and such that all its components are reduced.

Unless further notice we shall henceforth assume that f : X ! �
is smooth over �⇤ and that E := f�1(0) is a simple normal crossing
divisor all of whose components are reduced.

Notation. We let Ei be the components of E and we let

EJ =
\

i2J

Ej , E(m) =
a

|J|=m

EJ . (XI–12)

Introduce the universal cover

e : h! �⇤, e(u) = exp(2⇡iu)

of the punctured disk �⇤ and the canonical fibre X1 of f : X ! � as the
fibre product

X1 :=X ⇥�⇤ h

leading to the specialization diagram

X1
k�! X

i � E??yf1

??yf

??y
h

e�! �  � {0}.
(XI–13)

We also need a special set of neighbourhoods at any given point x 2 E. Choose
a system (z0, . . . , zn) of local coordinates on a neighbourhood U of Q in X
centred at x, such that f(z0, . . . , zn) = z0 · · · zk. Put

Vr,⌘ = {z 2 U | kzk < r and |f(z)| < ⌘} (XI–14)

for 0 < ⌘ ⌧ r ⌧ 1. These form a fundamental system of neighbourhoods of x
in X.
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11.2.3 The Nearby and Vanishing Cycle Functor

The canonical fibre X1 is homotopic to any fibre Xt of f since f1 is dif-
ferentiably a product. The total space X is homotopy equivalent to E by a
fibre preserving retraction r : X ! E. So the inclusion it : Xt ,! X followed
by the retraction can be seen as the specialization map rt : Xt ! E. The
complex (Rrt)⇤i⇤t Z

X
=  fZ

X
is the complex of nearby cocycles. Note that

using (B–21) we have

H
q( fZ

X
) = Hq(Xt) (XI–15)

and so it gives a rather elaborate way to calculate the cohomology of the
smooth fibre. The point is that there is an alternative complex-analytic de-
scription of this complex which allows us to enlarge it into a mixed Hodge
complex of sheaves:

Lemma 11.12. The complex of vanishing cocycles has the same cohomology
sheaves as i⇤Rk⇤(k⇤ZX

).

Proof. Using the notation (XI–14), the Milnor fibre Mf,x is the intersection
of Xt with Vr,⌘ for t small but non-zero. For t real Mf,x embeds in k�1Vr,⌘

through z 7! (z, log t

2⇡i
) and it can be seen that this is a homotopy equivalence.

Hence the inclusion induces

Hq(Mf,x) ' lim
r,⌘

Hq(k�1(Vr,⌘)) =
⇥
Rqk⇤ZX1

⇤
x

= [Hq(i⇤Rk⇤(k⇤ZX
))]

x
.

By (C–7), we have Hq(Mf,x) = [Hq( fZ
X

)]
x
, and this concludes the proof.

ut

Motivated by Lemma 11.12, we now consider any bounded below complex of
sheaves of R-modules K• on X and set

 fK• := i⇤Rk⇤k
⇤K•.

This is a bounded below complex of sheaves of R-modules (note that we
defined Rk⇤ of a complex which is bounded from below as k⇤ of its Godement
resolution). One has a natural morphism of complexes K• ! Rk⇤k⇤K• (see
(B–24)) and hence a morphism of complexes

sp : i⇤K• !  fK• (the specialization of K•). (XI–16)

As before, setting
�fK• := Cone•(sp),

projection on the second factor induces the canonical map

can :  fK• ! �fK• (XI–17)
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which occurs in the triangle for the cone (A–15), which in this setting is called
the specialization triangle

i⇤K•
sp

�����!  fK•

�fK•

S

S
So ◆

◆
◆/

can

[1]

We call  f and �f the nearby and vanishing cycle functors associated
to f . They map bounded complexes of sheaves of R-modules on X to similar
objects on E, and induce functors with the same names on the level of the
derived categories.

Note that in diagram (XI–13) one may as well restrict f to a small disk
around 0 and replace the map e : h ! � by its restriction to a subset {u 2
h | Im(u) > K} for some K 2 R, K > 0. The map h : X1 ! X1 given by
h(x, u) = (x, u + 1) satisfies k�h = k, hence we have an automorphism h⇤ of
Rk⇤k⇤K• and of  fK•. The formula for the monodromy analogous to (C–5)
becomes

T := (h⇤)�1 :  fK• !  fK•

✓
monodromy trans-

formation for f.

◆
(XI–18)

The inverse is put here because T follows a counterclockwise loop. We have
an induced monodromy action on �fK•, also denoted by T . Note that (T �
I)�sp = 0, and the analogue of the variation map (C–6) is the map

var : �fK• !  fK• (variation for f), (XI–19)

defined by var(x, y) = Ty � y for local sections x, y of i⇤K•[1] and  fK•

respectively. It is a morphism of complexes such that

T � I = var�can on  fK• .

Then also can�var = T � I on �fK•.
Under the assumption that all components of E are Kähler we are going to

construct mixed Hodge complexes of sheaves  Hdg

f
and �Hdg

f
on E such that

in the derived category of bounded above complexes of sheaves of Q-vector
spaces on E we have [ Hdg

f
]Q '  fQ

X
and [�Hdg

f
]Q ' �fQ

X
; moreover we’ll

show that there is an exact sequence of mixed Hodge complexes of sheaves

0! Hdg•(E)! [ Hdg

f
]Q

can��! [�Hdg

f
]Q ! 0 .

By Lemma 11.12 this will put a mixed Hodge structure on the cohomology of
X1 which by definition is the limit mixed Hodge structure.

11.2.4 The Relative Logarithmic de Rham Complex and
Quasi-unipotency of the Monodromy

We first construct a complex of sheaves on E which is quasi-isomorphic to
 fC

X
but which is closer in nature to the complexes occurring in mixed
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Hodge theory, the relative de Rham complex on X with logarithmic
poles along E:

⌦•

X/�
(log E) :=⌦•

X
(log E)/f⇤⌦1

�
(log 0) ^⌦•�1

X
(log E).

Outside of E this complex coincides with the relative de Rham complex from
Definition 10.25. Its cohomology sheaves are given by:

Theorem 11.13. Let X = C
n+1 with coordinates (z0, . . . , zn), and let f :

X ! � be given by t = f(z0, . . . , zn) = z0 · · · zk for some k 2 N with 0  k 
n. Let E be the zero set of t. Put ⇠i = dzi/zi for i = 0, . . . , k. Then

1) H0(⌦•

X/�
(log E))0 ' C{t};

2) H1(⌦•

X/�
(log E))0 is the C{t}-module with generators ⇠0, . . . , ⇠k and the

single relation
P

k

i=0
⇠i = 0;

3) Hq(⌦•

X/�
(log E))0 '

V
q

C{t}
H1(⌦•

X/�
(log E))0 for q > 1.

Proof. The complex ⌦•

X/�
(log E)0 can be considered as a double complex

where the di↵erential d is written as d1 + d2 such that d1 involves di↵eren-
tiation with respect to the first k + 1 variables and d2 di↵erentiation with
respect to the last n� k variables. The complex (⌦•

X/�
(log E)0, d2) is acyclic

in positive degrees by the relative Poincaré Lemma, so it is quasi-isomorphic
to (Ker(d2), d1). Hence we may reduce to the case n = k.

Since ⇠0 = �
P

j�1
⇠j we see that for i = 1, . . . , n we have for all g 2 OX,0

dg =
nX

j=1

Dj(g)⇠j , Dj := zj@/@zj � z0@/@z0.

So in this case the complex is isomorphic to the Koszul complex on R :=
C{z0, . . . , zn} with operators Di:

R
d0��! V ⌦R

d1��! ⇤2V ⌦R! · · ·! ⇤nV ⌦R,

where V = C⇠1 � · · ·� C⇠n and

d`(⇠i1 ^ · · · ^ ⇠i` ⌦ g) =
X

j

⇠j ^ ⇠i1 ^ · · · ^ ⇠i` ⌦Djg.

The operator Di multiplies a monomial za0

0
· · · zak

k
by the integer ai�a0. Hence

the cohomology of the complex may be computed monomial by monomial.
One only gets a non-zero contribution for those monomials on which all Di

are zero, i.e. for the powers of t. ut

Corollary 11.14. 1) H0(⌦•

X/�
(log E)⌦OE) ' C

E
;

2) H1(⌦•

X/�
(log E)⌦OE)0 is the C-vector space with generators ⇠0, . . . , ⇠k

and the single relation
P

k

i=0
⇠i = 0;
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3) Hq(⌦•

X/�
(log E)⌦OE) '

V
q

CE
H1(⌦•

X/�
(log E)⌦OE) for q > 1.

Let us next consider the logarithmic extension of the Gauss-Manin con-
nection. We start with the extension of (X–11):

0! f⇤(⌦1

�
(log 0))⌦⌦•

X/�
[�1]! ⌦•

X
(log E)! ⌦•

X/�
(log E)! 0. (XI–20)

We then have:

Proposition 11.15. The connecting homomorphism

�q

0
: Rqf⇤⌦

•

X/�
(log E)0 ! Rqf⇤⌦

•

X/�
(log E)0

for the long exact sequence associated to (XI–21) is residue at 0 of the of the
logarithmic extension of the Gauss-Manin connection.

Proof. Since outside E this is just the sequence (X–11), Theorem 10.28 shows
that the connecting homomorphism

� : Rqf⇤⌦
•

X/�
(log E)! ⌦1

�
⌦O� Rqf⇤⌦

•

X/�
(log E)

in the long exact sequence for the derived image sheaves restricts to the Gauss-
Manin connection on the punctured disk. On the origin we get its logarithmic
extension (XI–1). This notion has been explained in § 11.1.1 where we also
explained the residue (XI–2) for such a logarithmic extension. Taking residues,
transforms the sequence (XI–20) into the following exact sequence on E:

0! ⌦•

X/�
(log E)⌦OE [�1]

^(dt/t)

�����! ⌦•

X
(log E)⌦OE

��! ⌦•

X/�
(log E)⌦OE ! 0.

)
(XI–21)

Using the above calculations, the result follows. ut

We are going to relate the complex ⌦•

X/�
(log E) ⌦ OE to  fC

X⇤ by a
chain of quasi-isomorphisms as follows.

1) On X⇤ := X � E we have the quasi-isomorphism C
X⇤ ,! ⌦•

X⇤ which
induces a quasi-isomorphism

 fC
X⇤ !  f⌦

•

X⇤ .

2) The inclusion
k⇤⌦

•

X1 ! k⇤CGdm⌦
•

X1

induces a quasi-isomorphism

i⇤k⇤⌦
•

X1 !  f⌦
•

X1 .

The reason for this is that k : X1 ! X is a Stein map hence Rqk⇤F = 0
for q > 0 if F is a coherent sheaf on X1; apply this to each ⌦p

X1
.
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3) Consider the inclusion ↵ : i⇤⌦•

X
(log E)[log t] ,! i⇤k⇤⌦•

X⇤ . Here d log t =
dt/t as one would expect, and local sections of i⇤⌦•

X
(log E)[log t] have the

form
P

m

i=0
!i(log t)i. We will show below that the inclusion map ↵ of this

subcomplex is a quasi-isomorphism.
4) We also have the map � : i⇤⌦•

X
(log E)[log t]! ⌦•

X/�
(log E)⌦OE given

by
P

m

i=0
!i(log t)i 7! !0. We will show below that � is a quasi-isomorphism.

Modulo the two claims, this chain of quasi-isomorphism thus shows:

Theorem 11.16. If X is a complex manifold and f : X ! � is holomorphic
such that E = f�1(0) is a reduced divisor with normal crossings on X, then

 f (C
X

) ' ⌦•

X/�
(log E)⌦OE

in the derived category D+(sheaves of C-vector spaces on E).

Proof. We need to show that the maps ↵ and � are quasi-isomorphisms. Fix
a point x 2 E. Using the special neighbourhoods (XI–14) we have

⇥
Hq(i⇤k⇤⌦•

X1)
⇤
x

= lim
r,⌘

Hq(� (k�1(Vr,⌘),⌦•

X1)).

The natural inclusion

k�1(Vr,⌘) ,! {(z, u) 2 C
n+1 ⇥ C |

kY

i=0

zi = e(u)}

can be seen to be a homotopy equivalence. The restriction map

Hq((C⇤)k+1 ⇥ C
n�k ⇥ C; C)! Hq(k�1(Vr,⌘); C)

is surjective. The former is the q-th exterior power of the C-vector space with
basis ⇠0, . . . , ⇠k and the latter is obtained by dividing out the relation dt/t = 0.
This computes the stalk of the cohomology sheaf of i⇤k⇤⌦•

X1
at x and shows

that ↵ is a quasi-isomorphism.
The stalk at x of Hq(⌦•

X
(log E)) has already been computed (see Propo-

sition 4.3). The result is that H0 has stalk C, the stalk of H1 at x is the
vector space spanned by the classes of ⇠0, . . . , ⇠k, and Hq =

V
q H1. Let H1

denote the subspace of ⌦1

X
(log E)x spanned by ⇠0, . . . , ⇠k and Hq =

V
q H1 ⇢

⌦q

X
(log E)x. Let Hq[log t] denote the subspace of ⌦q

X
(log E)x consisting of

elements of the form
P

s

i=0
!i(log t)i with !i 2 Hq. Then one can easily

check that H•[log t] is a subcomplex of ⌦•

X
(log E)[log t]x which is quasi-

isomorphic to it, and that the inclusion H• ,! H•[log t] induces surjec-
tive maps Hq ! Hq(H•[log t]) with as kernel the elements (dt/t) ^ ⌘ with
⌘ 2 Hq�1. This implies that � is also a quasi-isomorphism. ut

Using the description of the Gauss-Manin connection given in Prop. 11.15
and its relation to the monodromy (Prop. 11.2) we deduce:
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Corollary 11.17. The monodromy T on H
q(E, f (C

X
)) is related to the con-

necting homomorphism

res0(r) : H
q(E,⌦•

X/�
(log E)⌦OE)! H

q(E,⌦•

X/�
(log E)⌦OE)

in the long exact hypercohomology sequence of the exact sequence (XI–21) by
the formula

T = exp(�2⇡ires0(r)).

Corollary 11.18. If X is a complex manifold, S a Riemann surface, and
f : X ! S a proper holomorphic map the union of whose singular fi-
bres E is a reduced divisor with normal crossings on X, then the sheaves
Rmf⇤⌦•

X/S
(log E) are locally free on S and

Rmf⇤⌦
•

X/S
(log E)t ⌦OS,t (t) ' H

m(Xt,⌦
•

X/S
(log E)⌦OXt) for all t 2 S.

Proof. The map f cannot be constant, hence it is flat. Moreover there is a
discrete subset ⌃ of S of critical values, because f is proper. Then E =
f�1(⌃).

It follows from Theorem 11.16 that the function

t 7! dimC H
m(Xt,⌦

•

X/S
(log E)⌦OXt)

is locally constant on S. The result follows from a trivial generalization of
[Gr-Rie, Theorem on p. 211]. ut

Corollary 11.19. The eigenvalues of the monodromy operator T are all 1.

Proof. By Cor. 11.17 it su�ces to show that the eigenvalues of R = res0(r) are
integers. Now R acts on the terms of the spectral sequence of hypercohomology

Ep,q

2
= Hp(E,Hq(⌦•

X/S
(log E)⌦OXOE)) =) H

p+q(E,⌦•

X/S
(log E)⌦OXOE).

It follows that the eigenvalues of R must occur as eigenvalues of its ac-
tion on the Ep,q

2
-terms. We saw (Prop. 11.15) that the action on the sheaf

Hq(⌦•

X/S
(log E)) ⌦ OE) is nothing but the connecting homomorphism �q

0

for the long exact cohomology sequence (XI–21). A computation in local
coordinates (notation as in Theorem 11.13) shows that on generators for
⌦•

X/S
(log E) we have �q

0
(ta⇠k1

^ · · · ^ ⇠iq ) = ata⇠k1
^ · · · ^ ⇠iq . After tensoring

with OE only the generators with a = 0 survive and so the eigenvalues of R
are zero indeed.

Remark 11.20. In the situation where X0 has simple normal crossings but
the least common multiple e of the multiplicities of E is possibly � 2 the
preceding computation has to be modified and shows that the residue of R
has eigenvalues of the form a/e and so are rational. It follows that in this
more general situation T0 (and hence also T ) is quasi-unipotent.
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11.2.5 The Complex Monodromy Weight Filtration and the
Hodge Filtration

We define a filtration W on ⌦•

X/�
(log E)⌦OE by

Wk⌦
•

X/�
(log E)⌦OE := Image of Wk⌦

•

X
(log E) in ⌦•

X/�
(log E)⌦OE .

It is clear that this is a filtration by subcomplexes, and at first sight it might
be a good ingredient for a mixed Hodge complex of sheaves. Let us however
calculate the cohomology sheaves of GrW

m
⌦•

X/�
(log E)⌦OE .

The sheaf ⌦•

X/�
(log E)⌦OE is the cokernel of the map

✓ : ⌦•�1

X
(log E)! ⌦•

X
(log E); ✓(!) =

dt

t
^ !

so that we need to investigate ✓. Note that dt/t induces a global sec-
tion of ⌦1

X
(log E) ⌦ OE and hence that ✓ maps Wk⌦

p

X
(log E) ⌦ OE to

Wk+1⌦
p+1

X
(log E)⌦OE and induces maps

✓ : GrW

k
⌦p+k

X
(log E)⌦OE ! GrW

k+1
⌦p+k+1

X
(log E)⌦OE .

Recalling that GrW

0
⌦p

X
(log E) ⌦ OE ' ⌦̃p

E
and applying the residue maps

(IV–2) to the terms of the sequence

0! GrW

0
⌦p

X
(log E)⌦OE

✓�! GrW

1
⌦p+1

X
(log E)⌦OE

✓�! GrW

2
⌦p+2

X
(log E)⌦OE . . .

one obtains the sequence

0! ⌦̃p

E
! a1⇤⌦

p

E(1)
! a2⇤⌦

p

E(2)
! · · ·

in which the maps are nothing but the alternating sums of restriction maps.
Hence the sequences are exact.

We find GrW

m
(⌦•

X/�
(log E)⌦OE) as the cokernel of the map

✓ : GrW

m�1
(⌦•�1

X
(log E)⌦OE)! GrW

m
⌦•

X
(log E)⌦OE ,

but the exactness just proved entails exactness of the sequence

0! GrW

m
(⌦•

X/�
(log E)⌦OE) ✓�! GrW

m+1
(⌦•+1

X
(log E)⌦OE)

✓�! GrW

m+2
(⌦•+2

X
(log E)⌦OE).

Again, by the residue maps this sequence transforms into

0! GrW

m
⌦•

X/�
(log E)⌦OE[m] ! (am+1)⇤⌦•

E(m+1)
! (am+2)⇤⌦•

E(m+2)

so that
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Hm GrW

m
⌦•

X/�
(log E)⌦OE ' Ker((am+1)⇤CE(m+1)

! (am+2)⇤CE(m+2)
)

' C
E[m+1]

where E[m + 1] is the set of points of E of multiplicity at least m + 1.
Moreover, Hq GrW

m
⌦•

X/�
(log E) ⌦ OE = 0 whenever q 6= m. In particular,

GrW

0
⌦•

X/�
(log E) ⌦ OE is a resolution of C

E
and there is no hope that we

get a pure Hodge structure out of it!
However, this computation provides us with a resolution of ⌦•

X/�
(log E)⌦

OE as follows. Define a bi-filtered double complex of sheaves

(A•,•, d0, d00, W (M), W )

on E by

Ap,q = ⌦p+q+1

X
(log E)/Wp⌦

p+q+1

X
(log E) for p, q � 0

with di↵erentials
d0 : Ap,q ! Ap+1,q,

d00 : Ap,q ! Ap,q+1,

defined by
d0(!) = (dt/t) ^ !,

d00(!) = d!

and two filtrations, the weight filtration, respectively the monodromy
weight filtration

WrA
p,q = image of Wr+p+1⌦

p+q+1

X
(log E) in Ap,q,

W (M)rA
p,q = image of Wr+2p+1⌦

p+q+1

X
(log E) in Ap,q. (XI–22)

We have maps

µ : ⌦q

X/�
(log E)⌦OE ! A0,q, ! 7! (�1)q(dt/t) ^ ! mod W0

defining a morphism of complexes

µ : ⌦•

X/�
(log E)⌦OE ! s(A•,•).

Here s(A•,•) is the associated single complex. The exactness of the sequences
above shows that

µ : (⌦•

X/�
(log E)⌦OE , W, F )! (s(A•,•), W, F )

is a bi-filtered quasi-isomorphism, if we equip s(A•,•) with the filtration F
given by

F rs(A•,•) =
M

p

M

q�r

Ap,q. (XI–23)
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Hence this map is a quasi-isomorphism, and

s(A•,•) '  fC
X

.

Moreover, because d0W (M)r ⇢W (M)r�1 we find that

GrW (M)

r s(A•,•) '
L

k�0,�r
GrW

r+2k+1
⌦•

X
(log E)[1]

'
L

k�0,�r
(ar+2k+1)⇤⌦•

E(r+2k+1)
[�r � 2k]

(XI–24)

where the last isomorphism is defined by resr+2k+1 (see § 4.2).
Introduce the morphism

Apq ⌫�! Ap+1,q�1

������

������
⌦p+q+1

X
(log E)/Wp⌦

p+q+1

X
�! ⌦p+q+1

X
(log E)/Wp+1⌦

p+q+1

X
,

! 7�! ! mod Wp+1.

9
>>>>>>=

>>>>>>;

(XI–25)

It commutes with d0 and d00, so it induces an endomorphism of the associ-
ated simple complex s(A•,•) which we also denote by ⌫. It maps W (M)r to
W (M)r�2 and F p to F p�1.

Theorem 11.21. The following diagram is commutative:

H
q(E,⌦•

X/�
(log E)⌦OE)

µ

�! H
q(E, s(A••))??yres0(r)

??y�⌫

H
q(E,⌦•

X/�
(log E)⌦OE)

µ

�! H
q(E, s(A••))

Proof. Let B• = Cone•(⌫)[�1]. It becomes a double complex with Bpq =
Apq �Ap,q�1. Define maps µ̃ : ⌦q

X
(log E)⌦OE ! B0q = A0q �A0,q�1 by

µ̃(!) =
�
! ^ (dt/t)mod W0, (�1)q�1! mod W0

�
.

We obtain the commutative diagram with exact columns, in which the hori-
zontal maps are quasi-isomorphisms

0 0??y
??y

⌦•

X/�
(log E)⌦OE [�1] ✓�! s(A•,•)[�1]??y

??y
⌦•

X
(log E)⌦OE

⌘

�! B•

??y
??y

⌦•

X/�
(log E)⌦OE

✓�! s(A•,•)??y
??y

0 0
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We can conclude the theorem using Corollary 11.17 and the fact that the
connecting homomorphism in the long exact hypercohomology sequence of
the right hand column is the map induced by �⌫ (see Example A.11). ut

Note that a suitable Tate twist turns (ar+2k+1)⇤⌦•

E(r+2k+1)
[�r� 2k] into

the complex part of a pure Hodge complex of sheaves of weight r. What we
need is a similar construction over Q involving only the weight filtration.

11.2.6 The Rational Structure

To define the rational component of our mixed Hodge complex of sheaves
 Hdg

f
, we imitate the construction of the double complex A•,• on the rational

level. Note that the ingredients of the construction of A•,• are:

1) the logarithmic de Rham complex ⌦•

X
(log E) with its weight filtration W

and its multiplication;
2) the global section d log t of ⌦•

X
(log E);

In § 4.4 we have defined a rational analogue of the logarithmic de Rham com-
plex with its weight filtration: using the logarithmic structure we constructed
the complexes

K•

m
⇢ · · · ⇢ K•

1
⇢ · · ·

where

Kq

p
= i⇤Symp�q

Q
(OX)⌦

q^

Q

(Mgp

X,D
⌦Z Q),

One has multiplications
Kq

p
⌦Ks

r
! Kq+s

p+r
;

Kq

1
⌦Ks

1
! Kq+s

1
.

We have the global section ✓̃ = 1⌦t⌦2⇡i of K1

1
(1), which under �1 : K1(1)!

⌦1

X
(log E) maps to dt/t . This motivates to define the filtered double complex

(C•,•, W (M)) by

Cp,q =
�
i⇤Kp+q+1

1
/i⇤Kp+q+1

p

�
(p + 1) for p � 0 and p + q � �1 (XI–26)

with di↵erential d = d0 + d00 where

d0 : Cp,q ! Cp+1,q, d0(x⌦ y) = x⌦ (t ^ y)
d00 : Cp,q ! Cp,q+1, d00(x⌦ y) = dK(x⌦ y),

�
(XI–27)

where dK is the di↵erential in the complex i⇤K1. It carries the filtration

W (M)rC
p,q = image of i⇤Kp+q+1

r+2p+1
(p + 1) in Cp,q.

Referring to the complex monodromy weight filtration (XI–22) and the Hodge
filtration (XI–23) the map � induces a filtered quasi-isomorphism
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(s(C•,•), W (M))⌦Q C! (s(A•,•), W (M)) . (XI–28)

Note that

(1⌦ t) ·W (M)rC
p,q ⇢ Im

h
Kp+q+2

r+2p+2
(p + 2)! Cp+1,q = W (M)r�1C

p+1,q

i

so
GrW (M)

r
s(C•,•) '

M �
GrW

r+2p+1
K•

n+p+1

�
(p + 1)[1]

which underlies a Hodge complex of sheaves of weight r+2p+1�2(p+1)+1 =
r.

We still have to show that the rational structure on  fC
X

defined by the
quasi-isomorphism (XI–28) is the same as the one given by  fQ

X
. To this end

we construct a sequence of quasi-isomorphisms similar to that in the proof of
Theorem 11.16.

Consider the map k : X1 ! X. Note that we have a natural quasi-
isomorphism

Q
X1
! k⇤K1

which induces a quasi-isomorphism

 fQ
X
! i⇤Rk⇤k

⇤K1 .

The latter complex contains i⇤K1 and we have the diagram

Rk⇤k⇤K1  i⇤K1 ! C•,•

# # #
 fC

X
 i⇤⌦•

X
(log E)[u]! A•,•

in which the vertical arrows become quasi-isomorphisms after tensoring with
C and the bottom row consists of quasi-isomorphisms. Hence also the top row
consists of quasi-isomorphisms.

11.2.7 The Mixed Hodge Structure on the Limit

We thus have shown:

Theorem 11.22. Let f : X ! � be a proper holomorphic map from a com-
plex manifold X to the unit disk in C, smooth over the punctured disk. Suppose
that E = f�1(0) is a reduced divisor with simple normal crossings on X and
that the irreducible components of E are Kähler. Referring to (XI–22), (XI–
23) and (XI–28) the data

 Hdg

f
:=( fZ

X
, (s(C•,•), W (M)), (s(A•,•), W (M), F ))

together with the quasi-isomorphisms constructed above, constitute a marked
mixed Hodge complex of sheaves on E.

We write Hk(X1) for the mixed Hodge structure which this complex puts
on the hypercohomology group H

k(E, fZ
X

).
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Consider the E1-term of the weight spectral sequence

W (M)E
�r,q+r

1
=

M

k�0,r

Hq�r�2k(E(2k + r + 1); Q)(�r � k). (XI–29)

The restrictions k � 0,�r come from (XI–24).

Notation. Following [G-N] we introduce

Kijk

Q
= Hi+j�2k+n(E(2k � i + 1); Q)(i� k) if k � 0, i
= 0 else,

Kij

Q
=

L
k
Kijk

Q
.

9
=

; (XI–30)

Observe that the E1-term of the weight spectral sequence then reads

W (M)E
�r,q+r

1
=

M

k

Hq�r�2k(E(2k + r + 1); Q)(�r � k) =
M

k

K�r,q�n,k

Q
.

Corollary 11.23. Under the same hypotheses we have
1) The monodromy weight spectral sequence

W (M)E
�r,q+r

1
=

M

k

K�r,q�n,k

Q
) Hq(X1; Q)

degenerates at E2.
2) The Hodge spectral sequence

F Epq

1
= Hq(E,⌦p

X/�
(log E)⌦OE)) Hp+q(X1; C)

degenerates at E1.

Corollary 11.24. Under the same hypotheses, if ✏ > 0 is su�ciently small,
then for all t 2 �⇤ with |t| < ✏ the Hodge spectral sequence

F Epq

1
= Hq(Xt,⌦

p

Xt
)) Hp+q(Xt; C)

degenerates at E1.

Proof. Define hpq(t) := dim Hq(Xt,⌦
p

X/�
(log E)⌦OXt) for t 2 �. Take ✏ > 0

so small that hpq(t)  hpq(0) for all t 2 � with |t| < ✏ and all p, q � 0. For
t 6= 0 one has ⌦p

X/�
(log E) ⌦OXt ' ⌦p

Xt
so by the Hodge spectral sequence

we have X

p,q

hpq(t) �
X

k

dim Hk(Xt; C) for t 6= 0

with equality if and only if the Hodge spectral sequence for Xt degenerates
at E1. We have

X

k

dim Hk(X1; C) =
X

p,q

hpq(0) �
X

p,q

hpq(t) �
X

k

dim Hk(Xt; C)

so equality must hold everywhere as dim Hk(X1; C) = dim Hk(Xt; C) by
Theorem 11.18. ut
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Corollary 11.25. We have dim F pHk(X1) = dim F pHk(Xt), t 2 �⇤.

Recall (see Def. 3.13) that any mixed Hodge complex of sheaves has a
Hodge-Grothendieck class in the Grothendieck ring K0(hs) which, when com-
posed with the Hodge number polynomial, yields the Hodge-Euler polynomial.
Recall also that L = [Q(�1)] = H2(P1) 2 K0(hs).

Corollary 11.26. For the Hodge-Grothendieck class we have

�Hdg( Hdg

f
) =

P
b�1

(�1)b�1�Hdg(E(b)) ·
hP

b�1

a=0
L

a

i

=
P

b�1
(�1)b�1�Hdg(E(b)⇥ P

b�1).

)
(XI–31)

and the Hodge-Euler polynomial is given by

eHdg( Hdg

f
) =

X

b�1

(�1)b+1eHdg(E(b))
ubvb � 1
uv � 1

.

Proof. We use the monodromy weight spectral sequence (XI–29) to calculate
the Hodge-Grothendieck class. We put r+k = a, 2k+r+1 = b, q�r�2k = c.
Then a, c � 0, b � 1, and since k = b � a � 1, we have the restriction
0  a  b� 1. We find:

�Hdg( Hdg

f
) =

X

b�1,c�0

b�1X

a=0

(�1)c+b+1[Hc(E(b))(�a)]

=
X

b�1

(�1)b+1�Hdg(E(b)) ·
"

b�1X

a=0

L
a

#
.

The formula for the Hodge-Euler polynomial then follows. ut

Remark 11.27. The motivic interpretation of the Euler-Hodge character (Re-
mark 5.56) suggest to introduce the motivic nearby fibre

 mot

f
:=

X

b�1

(1)b�1E(b)⇥ P
b�1 2 K0(Var)

so that �Hdg( mot

f
) = �Hdg( Hdg

f
).

11.3 Geometric Consequences for Degenerations

11.3.1 Monodromy, Specialization and Wang Sequence

We keep the notations and hypotheses from the preceding sections. Recall the
map

sp : Z
E

= i⇤Z
X
!  fZ

X
.
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We will lift this map to the level of mixed Hodge complexes of sheaves.
Note that the endomorphism ⌫ of s(A•,•) (XI–25) has its companion on

s(C•,•):
�
i⇤Kp+q+1

1
/i⇤Kp+q+1

p

�
(p + 1) !

⇣
i⇤Kp+q+1

1
/i⇤Kp+q+1

p+1

⌘
(p + 1)����

����
Cp,q ⌫�! Cp+1,q�1(�1).

(XI–32)

The two companions define a morphism of (marked) mixed Q-Hodge com-
plexes of sheaves ⌫ : [ Hdg

f
]Q ! [ Hdg

f
]Q(�1). Moreover it follows from Theo-

rem 11.21 and Prop. 11.2 that N = log T is the map on cohomology induced
by 2⇡i⌫. We conclude:

Theorem 11.28. The map

log T

2⇡i
: Hk(X1; Q)! Hk(X1; Q)(�1)

is a morphism of mixed Q-Hodge structures.

Consider the mixed Q-Hodge complex of sheaves Ker(⌫) ⇢ [ Hdg

f
]Q. We

extend it to a mixed Hodge complex of sheaves on E by adding Z
E

as the
integral component, together with the identifications

Z
E
⌦Q = Q

E
' i⇤Q

X
' Ker(⌫Q).

The C-component of Hdg•(E) is the double complex
L

p,q�0
⌦q

E(p+1)
and

⌦q

E(p+1)
is identified with Ker(⌫C)p,q = GrW

p+1
⌦p+q+1

X
(log E) by means of the

Poincaré residue map. We conclude that we have a morphism of mixed Hodge
complexes of sheaves Ker(⌫)! Hdg•(E) which is a quasi-isomorphism on all
levels. So the inclusion

spHdg : Ker(⌫)!  Hdg

f

is a lifting of the specialization map sp to the level of mixed Hodge complexes
of sheaves. Consequently we have:

Theorem 11.29. The specialization map

sp : H⇤(E)! H⇤(X1)

is a morphism of mixed Hodge structures.

We extract one interesting consequence of the proof:

Corollary-Definition 11.30. Define

�Hdg

f
:= Cone•

�
Ker(⌫)

sp
Hdg

����!  Hdg

f

�
.
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The vanishing cohomology H
⇤(E,�Hdg

f
) carries a natural mixed Hodge

structure. Its Hodge-Grothendieck class is

�Hdg(�Hdg

f
) = �Hdg( Hdg

f
)� �Hdg(E)

=
X

b�1

(�1)b+1�Hdg(E(b)) · [L + · · ·+ L
b�1]

and its Hodge-Euler polynomial equals

eHdg(�Hdg

f
) =

X

b�1

(�1)b+1eHdg(E(b))

ub� ubvb

1� uv

�
.

Proof. By (III–13) the Hodge-Grothendieck class is the di↵erence �Hdg( Hdg

f
)�

�Hdg(E). Using (V–16) and (XI–31), the result about the Hodge-Grothendieck
class follows. ut

Remark 11.31. Continuing remark 11.27, the motivic vanishing cycle can
be defined as �mot

f
=  mot

f
� [E] 2 K0(Var). Explicitly

�mot

f
:=

X

b�2

(�1)b�1[E(b)⇥ P
b�2 ⇥ A

1].

We continue the Hodge theoretic discussion for the vanishing and nearby cycle
functors. The specialization triangle lifts as follows

Ker ⌫
sp

Hdg

��������!  Hdg

f

�Hdg

f

S

S
So ◆

◆
◆/

can
Hdg

[1]

Take local sections x of Ker(⌫)[1] and y of [ Hdg

f
]Q respectively and define the

morphism of rational mixed Hodge complexes

V : [�Hdg

f
]Q ! [ Hdg

f
]Q(�1), V(x, y) = ⌫(y). (XI–33)

By construction it satisfies V�canHdg = ⌫. So it induces morphisms of mixed
Hodge structures

V : H
k(E,�fQ

X
)! Hk(X1; Q)(�1)

for which V �can = ⌫ = N/2⇡i. This map fits into the following useful exact
sequence:

Theorem 11.32. We have the long exact sequence of mixed Hodge structures

! Hk

E
(X; Q)! H

k(E,�fQ
X

) V�! Hk(X1; Q)(�1)! Hk+1

E
(X; Q)!
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Proof. Consider the mixed Q-Hodge complex of sheaves Coker(⌫). We add
the integral component i⇤Rj⇤ZX⇤(1)/Z

X
(1)[1] to it. We claim that this yields

a mixed Hodge complexes of sheaves quasi-isomorphic to Hdg•(X,X � E)[1].
Indeed, ⌫ : Cp,q ! Cp+1,q�1(�1) is surjective for p > 0 so that

Coker(⌫) = (C0,•(�1), ✓)

and (i⇤K1/i⇤K0)[1]! Coker(⌫)Q is a quasi-isomorphism. In a similar way we
find that (⌦•

X
(log E)/W0)[1]! Coker(⌫)C is a bi-filtered quasi-isomorphism.

Note that Ker(V ) is the acyclic complex Cone•(Ker(⌫) id��! Ker(⌫)), hence

[�Hdg

f
]Q ! []�Hdg

f
]Q :=[�Hdg

f
]Q/ Ker(V )

is a weak equivalence. By construction we have

0! []�Hdg

f
]Q

V�! [ Hdg

f
]Q(�1)! Coker(⌫)! 0,

an exact sequence of mixed Q-Hodge complexes of sheaves. Take the long
exact hypercohomology sequence of this and use the calculation of Coker(⌫)
which we just have made. ut

The Wang sequence is the exact sequence (see [Wang] or [Mil68, Sect. 8])

· · ·! Hk(X⇤)! Hk(X1)
T�I���! Hk(X1)! Hk+1(X⇤)! · · ·

In order to obtain an exact sequence of mixed Hodge structures of this kind,
we have to modify it, because T � I is not a morphism of mixed Hodge
structures. However, N and T � I have the same kernel and cokernel, and
N/2⇡i is a morphism of mixed Hodge structures, induced by the map ⌫. From
⌫, (suitably defined over the rationals) we shall obtain a long exact sequence of
mixed Hodge structures, which is the natural analogue of the Wang sequence.

We first give an alternative for the rational component of Hdg•(X⇤) in
terms of logarithmic structures (§ 4.4), analogous to the case of a smooth
variety, using the fact that E is the reduced zero set of the holomorphic
function t : X ! C. As in § 4.4 the inclusion i : E ,! X gives rise to
the complex K•

1
= limp K•

p
and which is an incarnation of Rj⇤Q

X⇤ , such
that the subcomplex K•

p
is quasi-isomorphic to ⌧pRj⇤Q

X⇤ . Moreover, t is a
global section of K1

1
and as we have seen before induces multiplication maps

✓̃ : Kr

p
! Kr+1

p+1
and ✓̃ : Kr

1
! Kr+1

1
by the formula

✓̃(x⌦ y) := x⌦ (t ^ y).

Moreover

K•

p
/K•

p�1

qis

⇠��!Rpj⇤Q
T⇤

[�p] ' (ap)⇤Q
E(p)

(�p)[�p], p � 1.

so in defining
⇥
Hdg•(X⇤)

⇤
Q

we can replace (ap)⇤Q
E(p)

by
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L•

p
:=

�
K•

p
/K•

p�1

�
(p)[p].

The mapping
(ap)⇤Q

E(p)
! (ap+1)⇤Q

E(p+1)

then corresponds to
2⇡i✓̃ : L•

p
! L•

p+1

and we take the quotient of the resulting complex
M

p�0

i⇤L•

p
� i⇤K•

1

by the image of i⇤K•
0

under the map (�↵̃, �̃) where ↵̃ the map induced by ✓̃
and � is the inclusion of i⇤K•

0
into i⇤K•

1
. This complex we call

⇥
^Hdg•(X⇤)

⇤
Q
.

It maps naturally to the previously defined
⇥
Hdg•(X⇤)

⇤
C
, preserving the

weight filtration W , and defines hence a mixed Q-Hodge complex of sheaves
^Hdg•(X⇤) computing the rational cohomology of X⇤.
Also note that we dispose of a commutative diagram

⇥
^Hdg•(X⇤)

⇤
Q

⇢Q��! s(C•,•)
# #⇥

Hdg•(X⇤)
⇤
C

⇢C��! s(A•,•)

where the map ⇢Q is defined as follows:

– it maps a section ! of i⇤Kq

1
to

(�1)q ✓̃(!) 2 i⇤Kq+1

1
/i⇤Kq+1

0
= Cp,0

– it restricts to the inclusion

i⇤Kp+q+1

p+1
/i⇤Kp+q+1

p
! Cp,q

on the remaining summands.
– these maps add up to zero on the image of K0;

The map ⇢C is defined analogously. It follows that we get a morphism of
marked mixed Q-Hodge complexes of sheaves

⇢ : ^Hdg•(X⇤)! [ Hdg

f
]Q

which induces a morphism of mixed Q-Hodge structures

⇢0 : Hk(X⇤; Q)! Hk(X1; Q)

which is part of our desired Wang sequence.
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Let us compare Cone•(⇢) with [ Hdg

f
](�1). For simplicity we restrict the

treatment to C-coe�cients. Define a map ⌫̃ : Cone•(⇢C)! s(A•,•) as follows:
let

((xpq), (yrs), zm+1)

represent a section of Cone•(⇢C), where p + q = m, r + s = m + 1 and

xpq 2 Ap,q, yrs 2W0A
r,s, zm 2 ⌦m+1

X
(log E) .

We define

⌫̃(xpq) = ⌫(xpq), ⌫̃(yrs) = 0, ⌫̃(zm+1) = (�1)m+1zm+1 mod W0 2 A0,m

Then clearly, the composition of ⌫̃ with the inclusion s(C•,•) ,! Cone•(⇢C)
coincides with ⌫. Moreover, ⌫̃ is a morphism of complexes, compatible with
filtrations W and F , whose kernel is acyclic. This shows that ⌫̃ is a quasi-
isomorphism, and the usual sequence for the cone of ⇢ then yields the modified
Wang sequence we are after. It is left to the reader to check that in fact ⌫̃ can
also be defined over Q in a compatible way. This shows:

Theorem 11.33. The modified Wang sequence

· · ·Hk(X⇤; Q)! Hk(X1; Q) ⌫�! Hk(X1; Q)(�1)! Hk+1(X⇤; Q) · · ·(XI–34)

is an exact sequence of mixed Q-Hodge structures.

11.3.2 The Monodromy and Local Invariant Cycle Theorems

We investigate the monodromy weight spectral sequence whose E1-term, after
tensoring with R can be identified (as real Hodge structures) as follows

W (M)E
�r,q+r

1
⌦ R ' K�r,q�n

Q
⌦ R,

with the Ki,j

Q
as in (XI–30). For simplicity of notation we set

Kij = Kij

Q
⌦ R, Ki,j,k = Ki,j,k

Q
⌦ R

so that for k � 0, i

Kij = Hi+j�2k+n(E(2k � i + 1); R)(i� k)

and else Kij = 0. These Kij come from the single complex associated to the
double complex C•,• defined in (XI–26) with di↵erentials (XI–27). It follows
that the di↵erential d1 of the monodromy weight spectral sequence is a sum
d1 = d0

1
+ d00

1
of two morphisms of real Hodge structures induced by the two

di↵erentials d0, d00:
d0 : Ki,j,k ! Ki+1,j+1,k+1,
d00 : Ki,j,k ! Ki+1,j+1,k.
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From Proposition 4.10, we see that d0 is the restriction map and that d00 = ��
with � the Gysin map. We also recall (XI–32) that the double complex C•,•

admits a map ⌫ essentially induced by the identity on the logarithmic De
Rham complex. On the level of hypercohomology it induces a morphism of
mixed Hodge structures

⌫ : Ki,j,k ! Ki+2,j,k+1(�1)

which is the identity whenever its source and target are both nonzero (i.e.
whenever k � 0, i). We deduce from this:

Proposition 11.34. With notations as above, if the components of E are
Kähler, then

1) for all i � 0, ⌫ induces an isomorphism ⌫i : K�i,j ⇠�! Ki,j(�i);
2) Ker(⌫i+1) \K�i,j = K�i,j,0.

We now suppose in addition that there exists a class
µ 2 H2(E; R)(1) which restricts to a Kähler class on each component of E.
We speak of a one-parameter Kähler degeneration. Cup product with
the restriction of µ to the appropriate intersection of components of E defines
mappings

µ : Ki,j,k ! Ki,j+2,k(1)
for all k � 0, i. Because of our hypothesis, the mappings µ commute with
d0, d00 and ⌫. By the hard Lefschetz theorem 1.30, iteration of µ induces
isomorphisms

µj : Ki,�j ' Ki,j(j)
for all j � 0. Hence, if we define

K�i,�j

0
:= Ker(µj+1) \Ker(⌫i+1) \K�i,�j

then

K�i,�j

0
= Ker(µj+1) \K�i,�j,0 = Hn�i�j

prim
(E(i + 1); R)(�i)

and we have a double primitive decomposition

Kr,s =
X

i,j�0

⌫iµjKr�2i,s�2j

0
(i� j).

The linear mapping
 : K•,• ⌦R K•,• ! R(�n)

defined by (recall that "(a) = (�1)a(a�1)/2)

 (x, y) =

8
>><

>>:

"(i + j � n)
✓

1
2⇡i

◆n�2k�i Z

E(2k+i+1)

x ^ y if x 2 K�i,�j,k,
y 2 Ki,j,k+i

0 else.

is a pairing on K•,• which as we shall see, induces a polarization on the
primitive parts, using µ and ⌫:
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Theorem 11.35. i)  is a morphism of bigraded real Hodge structures
(where R(�n) has bidegree (n, n));
ii)  (y, x) = (�1)n (x, y);
iii)  (⌫x, y) +  (x, ⌫y) = 0;
iv)  (µx, y) +  (x, µy) = 0;
v)  (d0x, y) =  (x, d00y);
vi)  (d00x, y) =  (x, d0y).

Proof. i) Recall (II–2) that for a smooth d-dimensional compact Kähler man-
ifold Z the trace map tr : H2d(Z; R) ! R(�d) is given on de Rham repre-
sentatives by

tr(!) =
✓

1
2⇡i

◆d Z

Z

!

This is an isomorphism of real Hodge structures. As

 (x, y) = "(i + j � n) tr(x ^ y)

and cup product is a morphism of real Hodge structures,  is a morphism of
real Hodge structures.
ii) For x 2 K�i,�j,k, y 2 Ki,j,k+i, one has

 (y, x) = "(�i� j � n) tr(y ^ x) = "(�i� j � n)(�1)n+i+j tr(x ^ y)
= (�1)n"(i + j � n) tr(x ^ y) = (�1)n (x, y),

as y ^ x = (�1)i+j+nx ^ y.
iii) Let x 2 K�i,�j�2,k, y 2 Ki,j,k+i. Then

 (µx, y) = "(i + j � n) tr(µx ^ y)
= �"(i + j � n + 2) tr(x ^ µy) = � (x, µy)

because x⌦ µy 2 K�i,�j�2,k ⌦Ki,j+2,k+i and "(a + 2) = �"(a). This proves
iii) and the proof of iv) is similar.
v) For x 2 K�i�1,�j�1,k�1, y 2 Ki,j,k+i we have

 (d0x, y) = "(i + j � n) tr(d0x ^ y) = "(i + j � n) tr(x ^ �y)
= �"(i + j � n) tr(x ^ d00y) =  (x, d00y)

because d00 = �� with � the Gysin map (see Prop. 4.7) which is the transpose
of the restriction map d0.
vi) is a consequence of v) and ii).

Proposition 11.36. The form Q : K�i,�j

0
⌦K�i,�j

0
! R defined by

Q(x, y) = (2⇡i)n+i�j (x, ⌫iµjCy)

is symmetric positive definite.
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Proof. We can write

Q(x, y) = "(i + j � n)
Z

E(i+1)

((2⇡i)ix ^ (µ/(2⇡i)jC(2⇡i)iy).

Note that ⇠ = (2⇡i)ix, ⌘ = (2⇡i)iy 2 Hn�i�j

prim
(E(i + 1); R), L = µ/(2⇡i) is

the Lefschetz operator on E = E(i + 1) and and that the form (⇠, ⌘) 7!
"(n� i� j)

R
E

(C⇠ ^ Lj⌘) = "(i + j � n)
R

E
(⇠ ^ LjC⌘) is positive definite by

the classical Hodge-Riemann bilinear relations (Thm. 1.33). ut

In section 1.2.2 we have seen that the Lie algebra sl(2, R) has the following
generators:

` =
✓

0 0
1 0

◆
, � =

✓
0 1
0 0

◆
, b =

✓
�1 0
0 1

◆
.

We have two commuting endomorphisms ⌫ and µ on K•,• for which

⌫i : K�i,j
⇠=�! Ki,j and µj : Ki,�j

⇠=�! Ki,j .

Therefore K•,• admits a unique representation ⇢ of SL(2, R)⇥ SL(2, R) with

L1 := d⇢(`, 0) = ⌫ d⇢(b, 0) = multiplication with i on Ki,j ;
L2 := d⇢(0, `) = µ d⇢(0, b) = multiplication with j on Ki,j

We define
⇤1 := d⇢(�, 0),
⇤2 := d⇢(0,�),

w := ⇢(w, w), where w =
✓

0 1
�1 0

◆
.

Lemma 11.37. The bilinear form on K•,• given by

�(x, y) = (2⇡i)n (x, Cwy)

is symmetric and positive definite.

Proof. For (r, s) 6= (i, j), the spaces K�i,�j

0
and K�r,�s

0
are perpendicu-

lar with respect to �. So writing x =
P
⌫pµqxi�2p,j�2q 2 Ki,j and y =P

⌫rµsyi�2r,j�2s with the xk,`K
k,`

0
and ym,n 2 Km,n

0
, using Prop. 1.26 we

have

 (x,Cwy) =
X

(�1)p+q (xi�2p,j�2q, ⌫
pµqCw⌫rµsyi�2r,j�2s)

=
X

(�1)p+q+r+s
r!s!

(r � i)!(s� j)!
 (xi�2p,j�2q, C⌫

p+r�iµq+s�jyi�2r,j�2s)

=
X p!q!

(p� i)!(q � j)!
 (xi�2p,j�2q, C⌫

2p�iµ2q�jyi�2r,j�2s).

But the left hand side is just the form Q from Prop. 11.36 which states that
it is symmetric positive definite on Ki,j

0
ut
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Recall that K•,• carries a di↵erential d of bidegree (1, 1) which commutes
with ⌫ and `. We let d⇤ denote its adjoint with respect to �.

Lemma 11.38.
d⇤ = w

�1dw.

Proof.
�(dx, y) = (2⇡i)n (dx, Cwy)

= (2⇡i)n (x, dCwy)
= �(x, (Cw)�1dCwy)
= �(x,w�1dwy). ut

We define
� : K•,• ! K•,•

by
� = dd⇤ + d⇤d.

Then the inclusion of Ker(�) into K•,• induces an isomorphism of Ker(�)
with H(K•,•, d).

Theorem 11.39. Ker(�) is an invariant subspace of K•,•.

Proof. (See [G-N]). Consider End(K•,•) as a representation space for the
group SL(2, R)⇥SL(2, R). For representations �, ⌧ of SL(2, R) in vector spaces
V1, V2 we have the representation � ⇥ ⌧ in V1 ⌦ V2 given by

� ⇥ ⌧(g1, g2) = �(g1)⌦ ⌧(g2).

Because d 2 End(K•,•)1,1 and L1(d) = L2(d) = 0 (as d commutes with
L1, L2), the sub representation W of End(K•,•) generated by d is isomorphic
to ⇢1 ⇥ ⇢1, and d is a dominant vector. Hence d⇤ = w�1(d) = ⇤1⇤2(d).

Consider the composition map

c : W ⌦W ! End(K•,•), f ⌦ g 7! f � g.

Then c is equivariant with respect to the action of SL(2, R)⇥SL(2, R). There-
fore, to show that � = c(d⇤ ⌦ d + d⌦ d⇤) is invariant, it su�ces to show that
it is the image under c of an invariant element of W ⌦W . Note that d2 = 0
so d⌦ d 2 Ker(c). Hence Ker(c) contains the whole sl(2, R)⇥ sl(2, R)-orbit of
d⌦ d. Note that

⇤1⇤2(d⌦ d) = ⇤1(⇤2(d)⌦ d + d⌦ ⇤2(d)
= d⌦ d⇤ + d⇤ ⌦ d + ⇤1(d)⌦ ⇤2(d) + ⇤2(d)⌦ ⇤1(d)

lies in the kernel of c and the element

d⌦ d⇤ + d⇤ ⌦ d� ⇤1(d)⌦ ⇤2(d)� ⇤2(d)⌦ ⇤1(d)

is invariant. Hence d⌦ d⇤ + d⇤ ⌦ d maps to an invariant element under c. ut



284 11 Degenerations of Hodge Structures

As the cohomology of the complex (K•,•, d) is just the E2-term of the
weight spectral sequence, which degenerates at the E2-term, we conclude:

Theorem 11.40. The map ⌫ induces isomorphisms

⌫r : GrW (M)

k+r
Hk(X1; Q)

⇠=�! GrW (M)

k�r
Hk(X1; Q)(�r)

and the weight filtration W (M) on Hk(X1; Q) coincides with the weight fil-
tration of N = log T centred at k.

Corollary 11.41. The filtration induced by W (M) on Hk(X1, Q) coincides
with the weight filtration W (N, k) of N = log(Tu) centred at k (see Lemma-
Definition 11.9).

Corollary 11.42 (Monodromy Theorem). Suppose that for integers k, `
one has Hp,k�p(Xt; C) = 0 for all p > k/2+`. Then N `+1 = 0 on Hk(X1; C).

Proof. As N is a morphism of mixed Hodge structures of type (�1,�1), its
powers are strictly compatible with the Hodge and weight filtrations. There-
fore it su�ces to show that

N `+1 : Grr

F
Hk(X1; C)! Grr�`�1

F
Hk(X1; C)

is the zero map for all r. This is clearly the case, because the conditions on k
and ` imply that either Grr

F
Hk(X1; C) = 0 or Grr�`�1

F
Hk(X1; C) = 0 (or

both).

Theorem 11.43 (Local invariant cycle theorem). Let X ! � be a
Kähler degeneration over a disk � centred at 0. For all k � 0 the sequence

Hk(E; Q)
sp

��! Hk(X1; Q)
T�I���! Hk(X1; Q)

is exact. Concretely: the invariant classes in the generic fibre X1 are the
classes in the image of the specialization map, i.e. the classes which are the
restrictions from classes on the total space (provided � is small enough).

Proof (Deligne). As N = 2⇡i⌫ we have Ker(N) = Ker(T � I) = Ker(⌫). So it
su�ces to show that the sequence

Hk(E; Q)
sp

��! Hk(X1; Q) ⌫�! Hk(X1; Q)(�1)

is an exact sequence of mixed Hodge structures. The specialization map is
induced by the retraction r : X ! X0, i.e. sp : Hk(E) ' Hk(X)! Hk(X1).
Hence the following commutative diagram with an exact row

Hk(E; Q) ↵�! Hk(X⇤; Q)! Hk+1

E
(X; Q)

@

@R

sp

??y�

Ker(⌫)
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where X⇤ is considered as a deleted neighbourhood of E. By the Wang
sequence (11.33) we see that � is surjective. Moreover, by Theorem 11.40
Ker(⌫) = Wk Ker(⌫). So the restriction of � to WkHk(X � E; Q) is also sur-
jective. But Hk(E; Q) maps surjectively to WkHk(X⇤; Q), as Corr. 6.28 tells
us that Hk+1

E
(X; Q) has weights � k + 1. Hence � � ↵ is surjective. ut

A rather involved diagram chase can be used to show the following conse-
quence.

Corollary 11.44 (The Clemens-Schmid exact sequence). Combine the
exact sequence for the pair (X, X⇤) and the modified Wang sequence (XI–34)
into the following commutative diagram of mixed Hodge structures where the
dashed arrows are the compositions of the two obvious maps. Then the two
horizontal sequences are exact.

· · ·! Hk(X) 99K Hk(X1) ⌫�! Hk(X1)(�1) 99K Hk+2(X,X⇤)! · · ·

Hk(X⇤) Hk+1(X⇤)

· · · ⌫�! Hk�1(X1) 99K Hk+1(X, X⇤)! Hk+1(X) 99K Hk+1(X1) ⌫�! · · ·

Q
Qs

Q
Qs

Q
Qs

Q
Qs⌘

⌘3

⌘
⌘3

⌘
⌘3

⌘
⌘3

11.4 Examples

We shall give some examples which show how knowledge of the central fibre
and the pure Hodge structure on the cohomology of a smooth fibre Xt of f
can be used to figure out the Hodge numbers of the limiting mixed Hodge
structure.

As noted before (Lemma-Def. 11.9), the weight filtration on Hk(X1; Q)
is uniquely determined by the monodromy, and the length of a Jordan bloc of
N = log T of size ` is the dimension of the primitive space weight ` subspace
of Hk(X1; Q).

We also know (Lemma 11.25) that the Hodge filtration spaces of the lim-
iting mixed Hodge structure and the ordinary pure Hodge structure have the
same dimension, i.e. dim FmHk(Xt) = dim FmHk(X1) and hence

eHdg( f )|v=1 = eHdg(Xt)|v=1. (XI–35)

In the examples we have H2k(X1) = L
k for k 6= n = dim Xt. On the

middle cohomology we have (see Def. 11.9):

GrW Hn(X1) =
nM

`=0

`M

r=0

Nr[PHn(X1)]n+`
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where [Pn((X1)]` is pure of weight `. The number p` = dim[Pn((X1)]` of
Jordan blocs of size `+ 1 appears in the dimension formula

dim GrW

`
=

X

k�0

p`+2k. (XI–36)

The latter can be determined from the formula

�Hdg( f )|u=v=t = (�1)n

2nX

`=n

dim GrW

`
t` + (1 + t2 + · · · t2n) + �ntn, (XI–37)

where �n = 1

2
(�1 + (�1)n+1). The last term is non-zero only if n is even and

corrects the fact that in this case tn should not be present in the terms taking
care of the cohomology in degrees 6= n.

Examples 11.45. 1) Let F,L1, . . . , Ld 2 C[X0, X1, X2] be homogeneous forms
with deg F = d and deg Li = 1 for i = 1, . . . , d, such that F · L1 · · ·Ld = 0
defines a reduced divisor with normal crossings on P

2(C). We consider the
space

X = {([x0, x1, x2], t) 2 P
2 ⇥� |

dY

i=1

Li(x0, x1, x2) + tF (x0, x1, x2) = 0}

where � is a small disk around 0 2 C. Then X is smooth and the map
f : X ! � given by the projection to the second factor has as its zero fibre
the union E1 [ · · · [ Ed of the lines Ei : Li = 0. These lines are in general
position. The formula (XI–31) gives us

eHdg( f ) = d(1 + uv)�
✓

d

2

◆
(1 + uv) = (1�

✓
d� 1

2

◆
)(1 + uv).

The general fibre Xt is a smooth projective curve of degree d. Substituting
v = 1 in the preceding formula gives indeed g =

�
d�1

2

�
, the genus of a smooth

plane curve of degree d. Setting u = v = t we see that there are only even
weight terms for H1(X1) and its only primitive subspace has weight 2 and
dimension g (since dimH1(X1) = 2p2 = 2g) and in particular N has g
Jordan blocs of size 2, i.e. is “maximally unipotent”.
2) If we consider the same example, but replace P

2 by P
3 and curves by

surfaces, lines by planes, then the space X will not be smooth but has
ordinary double points at the points of the zero fibre where two of the
planes meet the surface F = 0. There are d

�
d

2

�
of such points, d on each line

of intersection. If we blow these up, we obtain a family f : X1 ! � whose
zero fibre D = E [F is the union of components Ei, i = 1, . . . , d which are
copies of P

2 blown up in d(d�1) points, and components Fj , j = 1, . . . , d
�
d

2

�

which are copies of P
1 ⇥ P

1. Thus

eHdg(D(1)) = d(1 + (d2 � d + 1)uv + u2v2) + d

✓
d

2

◆
(1 + uv)2.
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The double point locus D(2) consists of the
�
d

2

�
lines of intersections of the

Ei together with the d2(d� 1) exceptional lines in the Ei. So

eHdg(D(2)) = d(d� 1)(d +
1
2
)(1 + uv).

Finally D(3) consists of the
�
d

3

�
intersection points of the Ei together with

one point on each component Fj , so

�Hdg(D(3)) =
✓

d

3

◆
+ d

✓
d

2

◆
=

1
3
d(d� 1)(2d� 1).

We get

eHdg( f ) =
✓✓

d� 1
3

◆
+ 1

◆
(1 + u2v2) +

1
3
d(2d2 � 6d + 7)uv.

in accordance with the Hodge numbers for a smooth degree d surface:

h2,0 = h0,2 =
✓

d� 1
3

◆
, h1,1 =

1
3
d(2d2 � 6d + 7).

The formula (XI–37) shows that there are only weight 4 and 2 primitive
spaces, that dim Gr2

W
= 1

3
d(2d2 � 6d + 7) and dim W4 =

�
d�1

3

�
. It follows

that the monodromy on H2(X1) has
�
d�1

3

�
Jordan blocs of size 3 and

1

2
d3 � d2 + 1

2
d + 1 blocks of size 1.

3) Consider a similar smoothing of the union of two transverse quadrics in
P

3: Q1Q2 + tF4 = 0. The generic fibre is a smooth K3-surface and after
blowing up the 16 double points ⌃ = {t = Q1 = Q2 = F4 = 0} of the total
space of the family (a hypersurface inside �⇥P

3); the special fibre consists
of eighteen smooth components which intersect transversally according to
the following pattern:
i) E(1) has two components which are blowings up of Qi in ⌃, i = 1, 2,

and 16 exceptional divisors isomorphic to P
1 ⇥ P

1; hence eHdg(E(1)) =
18(1 + uv)2 + 32uv.

ii) E(2) consists of the 32 exceptional lines together with the strict trans-
form of the intersection of the two quadrics, which is an elliptic curve;
hence eHdg(E(2)) = 33(1 + uv)� u� v;

iii) E(3) consists of 16 points: one point on each exceptional P
1 ⇥ P

1, so
eHdg(E(3)) = 16.

We get
eHdg( f ) = 1 + u + v + 18uv + uv2 + uv2 + u2v2

Putting v = 1 we get 2 + 20u + 2u2, in agreement with the Hodge numbers
(1, 20, 1) on the H2 of a K3-surface. Setting u = v = t, formula (XI–
31) shows that dim Gr1

W
= dim Gr3

W
= 2, dim Gr2

W
= 18, dim Gr4

W
=

dim W0 = 0. Hence the weight filtration is W4 = W3 � W2 � W1 �
W0 = 0 which implies that N2 = 0, and since the non-trivial gradeds have
dimensions 2, 18, 2, the monodromy has two Jordan blocs of size 2 and 18
blocs of size 1.
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Applications of Asymptotic Hodge theory

Mixed Hodge theory has many applications to singularity theory. For instance, we
show in § 12.1 that the cohomology of the Milnor fibre admits a mixed Hodge struc-
ture and we give applications to the spectrum. Here the full force of our geometric
approach becomes clear since, in contrast to Schmid’s theory, we can localize around
a singularity.

In § 12.2 we explain Grothendieck’s induction principle, the proof of which uses
variations of Hodge structures.

12.1 Applications to Singularities

12.1.1 Localizing Nearby Cycles

The main di↵erence between the techniques used by W. Schmid and those in
Chapter 11 is that we have a local Hodge-theoretic description of the sheaf
of nearby cycles. This enables one to construct mixed Hodge structures on
cohomology groups of certain subsets of the general fibre which “are near” to
certain subsets of the special fibre. This is particularly interesting for unions
of components of the special fibre.

Let f : X ! S be a proper holomorphic map with X a complex manifold
of dimension n+1 and S the unit disk in C, such that E = f�1(0) is a reduced
divisor with strict normal crossings. Write E as the union of its irreducible
components:

E =
[

i2I

Ei.

For J ⇢ I we define

E(J) =
[

i2J

Ei

vJ��! E; E0(J) = E � E(I � J)
uJ��! E.
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Proposition 12.1. Let U(J) be a tubular neighbourhood of E(J) in X. For
t 2 S � {0} su�ciently small we have

H
k(E(J), (vJ)⇤ fQ

X
) ' Hk(U(J) \Xt; Q);

H
k(E(J), (uJ)! fQ

X
) ' Hk

c
(U(J) \Xt; Q).

Proof. As U(J) is a tubular neighbourhood of E(J) in X, it has a retraction
onto E(J), and the inclusion of E(J) into E\U(J) is a homotopy equivalence.
ut

We want to define a mixed Hodge complex of sheaves whose rational com-
ponent is quasi-isomorphic to (vJ)⇤ fQ

X
. This problem is analogous to re-

stricting the logarithmic de Rham complex to a union of components of the
divisor, which we did in § 6.3.2 and which produced the mixed Hodge complex
of sheaves KDR(C log D). Here the construction is similar.

For any (smooth) intersection Z of components of E we have the inclusion
◆Z : Z ! E and we define

◆⇤
Z
Ap,q = ⌦p+q+1

X
(log E)⌦OZ/Wp.

Then ◆⇤
Z
A•,• is quasi-isomorphic to ⌦•

X/S
(log E) ⌦ OZ . It inherits the filtra-

tions F and W (M).
On the rational level we have a similar construction. Instead of ⌦•

X
(log E)

we consider K1 (see § 4.4) with its filtration W , and restrict it (topologically)
to Z. In this way we obtain

◆⇤
Z
Cp,q =

⇢
◆⇤
Z
Kp+q+1

1
(p + 1)/Wp�1 if p � 0, p + q + 1 � 0;
0 else .

The complex ◆⇤
Z
C•,• inherits the filtration W (M). Let us write

E(k) \ Z :=
G

J⇢I,](J)=k

E(J) \ Z.

Then

GrW (M)

r
◆⇤
Z
C• '

M

k

(ar+2k+1)⇤Q
E(r+2k+1)\Z

(�r � k)[�r � 2k].

We have a similar relation between s(◆⇤
Z
A•,•, W (M)) and s(◆⇤

Z
C•,•, W (M))⌦C

as in the global case and so we obtain for each Z a mixed Hodge complex of
sheaves ◆⇤

Z
 H

F
Z

X
.

For an inclusion Z 0 ⇢ Z of closed strata of E we have a restriction map
◆⇤
Z
 H

F
Z

X
! ◆⇤

Z0 
H

F
Z

X
. If Z runs over the smooth intersections of E(J), we

obtain a J-cocubical system of mixed Hodge complexes of sheaves, the total
complex of which we denote by v⇤

J
 fQ

H

X
. Its underlying rational complex is

quasi-isomorphic to v⇤
J
 fQ

X
. Hence we obtain a mixed Hodge structure on

Hk(X1 \ U(J); Q).
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Proposition 12.2.

Grp

F
Hk(X1 \ U(J); C) ' Hk�p(E(J),⌦p

X/S
(log E)⌦OE(J)).

Proof. We have a filtered quasi-isomorphism

(⌦p

X/S
(log E)⌦OE(J), F )! (v⇤

J
A•,•, F )

and the Hodge spectral sequence degenerates at E1. ut

12.1.2 A Mixed Hodge Structure on the Cohomology of Milnor
Fibres

In order to put a mixed Hodge structure on the cohomology of the Milnor
fibre we apply the localisation procedure of § 12.1.1 to the exceptional divisor
coming from blowing up a singular point on the special fibre of a degeneration.
More generally, consider g : Y ! �, a flat projective map of relative dimension
n (so Y may be singular), and let C be a closed subvariety of g�1(0). We shall
suppose however that g is as close to a genuine degeneration as possible: 0
is the only critical value of g and Y � g�1(0) is smooth. Indeed, blowing up
along C, extracting roots and doing possibly some further blowings up brings
us in the situation of § 12.1.1. To be precise, we have the following variant of
Thm. 11.11:

Theorem 12.3. There exist a positive integer m and a commutative diagram

X
⇢

�! Y??yf

??yg

�0
µ

�! �

with �0 is a disk in C centred at 0, µ(t) = tm, X is smooth, f is projective
with special fibre E = f�1(0) =

S
i2I

Ei, a reduced divisor with strict normal
crossings on X. Moreover, the inverse image of C under ⇢ is a union of
components of E and the automorphism t 7! exp(2⇡i/m)t of �0 lifts to X in
such a way that it preserves fibres of ⇢.

Proof. First blow up the subvariety C inside Y to reduce to the case that C is
a divisor. Then blow up Y in order to reduce to the case when Y is smooth and
apply Thm. 11.11. Inspection of the proof of this theorem given in [K-K-M-S]
shows that we can extract roots in such a way that the components of the
special fibre become nonsingular and that the required lift exists. ut

Remark 12.4. In [Ste77a] the semistable reduction theorem has been avoided,
at the cost of admitting quotient singularities in the special fibre. In that
approach, first Y is resolved to obtain Ỹ ! S such that the special fibre Ỹ0

becomes a (non-reduced) divisor with (strict) normal crossings, one chooses
m which is a common multiple of all multiplicities of the components of the
special fibre, and considers the normalization of the fibre product Ỹ ⇥S S0.
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Notation. With notations as in the previous theorem, we let

◆⇤
C
 H

g
Q

Y
:= R⇢⇤v

⇤

J
 H

f
Q

X
.

It is a mixed Hodge complex of sheaves on C. In the special case that C is a
one-point set {y} we just write  H

g,y
Q

Y
.

Observe that  g,yQ
Y

is nothing but the stalk at y of the complex of sheaves
 gQ

Y
. Using (C–7), we deduce, and this is the crucial observation, that

Hk( H

g,y
Q

Y
) = Hk(Milg,y; Q). This implies:

Lemma-Definition 12.5. Let g : Y ! � be a holomorphic map of complex
manifolds, smooth away from the origin. Let y 2 g�1(0) and let Milg,y the
corresponding Milnor fibre. The complex  H

g,y
Q

Y
is a mixed Hodge complex of

sheaves on Milg,y endowing Hk(Milg,y; Q) with a mixed Hodge structure.
In fact, every smoothing of an isolated singularity can be globalized i.e. be put
in a family as above (see [Ste95bis]). It follows from the local nature of the
constructions that the resulting mixed Hodge structures on the cohomology
groups depend only on the local smoothing, i.e. on the germ of the holomorphic
map g : (Y, y) ! (S, 0), and not on the choice of globalization. In this way
one obtains invariants of the smoothing from the mixed Hodge structure on
the cohomology of its Milnor fibre.

Example 12.6 (ordinary multiple point). Suppose g : Y ! S is a projective
family of relative dimension n over the disk S with Y smooth, g smooth
outside a point y0 2 Y where g has an isolated singularity and such that
g(y0) = 0. We assume that y0 is an ordinary multiple point of g. This means
that the projectivized tangent cone of g�1(0) at y0 is nonsingular. Let m
denote the multiplicity of g�1(0) at y0. We form the fibre product Y 0 = Y ⇥SS0

where S0 ! S is the m-fold ramified cover t 7! tm. Then Y 0 has the unique
ordinary multiple point (y0, 0). Let X denote the blowing up of Y 0 with centre
(y0, 0), and let f : X ! S0, ⇢ : X ! Y denote the induced maps. The fibre
f�1(0) has two components: the strict transform E1 of the special fibre of
g and the exceptional component E2 = ⇢�1(y0), which is isomorphic to a
smooth hypersurface of degree m in P

n+1(C) and which contains E1 \ E2 as
a nonsingular hyperplane section.

The E1-term of the weight spectral sequence in this case only has the
contributions

Hq�2(E1 \ E2)(�1)
d
�1,q
1����! Hq(E1)�Hq(E2)

d
0,q
1���! Hq(E1 \ E2).

One has Grq+1

W
Hq(X1) = Ker(d�1,q+1

1
), Grq�1

W
Hq(X1) = Coker(d0,q�1

1
) and

Grq

W
Hq(X1) = Ker(d0,q

1
)/ Im(d�1,q

1
). The Gysin map Hq�2(E1\E2)(�1)!

Hq(E2) is injective unless q = n + 1 and the restriction map Hq(E2) !
Hq(E1\E2) is surjective unless q = n�1 by the Lefschetz hyperplane theorem.
Hence the only possibly non-zero E2-terms are the E0,q

2
for 0  q  2n,

E�1,n+1

2
, and E1,n�1

2
. We see from this that Hq(X1) is pure of weight q

unless q = n, in which case at most the weights n� 1, n, n + 1 occur.
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12.1.3 The Spectrum of Singularities

Let (V, F, �) be a triple consisting of a finite-dimensional complex vectorspace
V provided with a decreasing filtration F and an automorphism � of finite
order preserving F . There is a decomposition

(V, F ) =
M

�1<a0

(Va, F ) Va = Ker(� � exp(�2⇡ia)).

Observe that the numbers a which occur are rational numbers, so that for a
given integer n we can introduce the following invariant in the group ring of
the rational numbers:

Sp
n
(V, F, �) :=

X

a

X

p

[dim Grp

F
Va] · (n� p + a) 2 Z[Q].

A word of warning: in the group ring Z[Q] we have the rule: (a) · (b) = (a+ b)
whenever a, b 2 Q. Also (0) is the unit in this ring.

Apply this in the following setting. Let g : Y ! C be a regular function
on an n-dimensional algebraic variety Y ; for x 2 Y with g(x) = 0 we take
for V the i-th cohomology at x of the complex of sheaves  H

g
Q

Y
, for F the

Hodge filtration and for � = Ts, the semi-simple part of the monodromy. In
other words, letting ix : x ,! Y be the inclusion, we put

Spi(g, x) :=Sp
n
(Hi(i⇤

x
 H

g
Q

Y
), F, Ts)

which, after taking a suitable alternating sum yields the invariant

Sp(g, x) :=(�1)n[
X

i

(�1)iSpi(g, x) � (0)],

the spectrum of the singularity (g, x).

Example 12.7. Let g : C! C be given by g(z) = zn+1. Then X is the normal-
ization of the fibre product Y ⇥S S0 with S0 = C! S = C given by t 7! tn+1.
So X is the disjoint union of n + 1 copies of C each of which is mapped
isomorphically to S0 by f , and � permutes these components cyclically. Hence

H0(i⇤
x
 H

g
Q

Y
) = Q

n+1

and � is the cyclic permutation of its basis vectors. Hence

Sp(g, x) =
nX

i=1

✓
� i

n + 1

◆
.

We list a number of interesting properties of the spectrum.

1) Symmetry: if Y is smooth of dimension n + 1 and x 2 Y is an isolated
critical point of f : Y ! C with f(x) = 0, then Sp(f, x) is invariant under
the automorphism of the group ring Z[Q] given by (b) 7! (n� 1� b).
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2) The Thom-Sebastiani property: for function germs g : (Y, y)! (C, 0)
and h : (Z, z) ! (C, 0) we have the germ g � h : (Y ⇥ Z, (y, z)) ! (C, 0)
given by (g � h)(u, v) = g(u) + h(v). With this notation one has

Sp(g � h, (y, z)) = (1) · Sp(g, y) · Sp(h, z).

See [Var81, Theorem 7.3] (or also [SchS85]) for the isolated hypersurface
case and [DL99] for the general case. (M. Saito proved an even more general
theorem for mixed Hodge modules).

3) Semi-continuity. This deals exclusively with case of isolated hypersur-
faces. For any subset A ⇢ Q we have a group homomorphism

deg
A

: Z[Q]! Z,
X

b

nb · (b) 7!
X

b2A

nb.

By a result of M. Saito [Sa83] the geometric genus of (X, x) = f�1(0) is
equal to deg

(�1,0]
Sp(f, x). This invariant is upper semicontinuous under

deformation: if the function f is deformed such that the singularity x splits
into several singular points x1, . . . , xk all occurring in one fibre, then the
sum of the geometric genera of the singular points x1, . . . , xk is not more
than the geometric genus of x. This is a special case of

Theorem 12.8. If the function f is deformed to a function ft such that
the singularity x splits into several singular points x1, . . . , xk all occurring
in one fibre f�1

t
(s), then for each half open interval I of length one:

kX

i=1

deg
I
Sp(ft � s, xi)  deg

I
Sp(f, x).

This was proved in [Var83] for the case of low weight deformations of
weighted homogeneous isolated hypersurface singularities (in which case
the theorem even holds for an open interval of length one) and in [Ste85]
in general. When applied to a homogeneous singularity, Varchenko’s result
yields an upper bound for the number of isolated singular points of given
types which may occur on a projective hypersurface of given degree and
dimension (the spectrum bound).

4) Hertling’s conjecture. Let a1  a2  · · ·  aµ denote the sequence of
spectrum numbers of an isolated hypersurface singularity f : (Cn+1, 0) !
(C, 0). The symmetry property show that the mean of the spectrum num-
bers is equal to n�1

2
. But what about its variance? Claus Hertling [Hert01]

conjectured

Conjecture 12.9.

1
µ

µX

i=1

✓
ai �

n� 1
2

◆2

 aµ � a1

12

with equality if and only if f is a deformation with constant Milnor number
of a weighted homogeneous singularity.
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He proved himself, using the theory of Frobenius manifolds, that equality
holds in the weighted homogeneous case. The conjecture was verified for
functions of two variables by Brélivet [Bre].

For a generalization of the notion of spectrum, including symmetry, Thom-
Sebastiani and semi-continuity, to the case of isolated complete intersection
singularities, see [ES98].

12.2 An Application to Cycles: Grothendieck’s Induction

Principle

We shall discuss Grothendieck’s suggested approach to the generalized Hodge
conjecture by means of induction and give some examples in which this idea
can be applied successfully.

We first recall the statement of the conjecture for a smooth projective
variety X

GHC(X, m, c) :

8
>><

>>:

8H 0 a Q-Hodge substructure of Hm(X; Q)
of level  m� 2c,

9Z ⇢ X a subvariety of codimension � c
such that H 0 is supported on Z.

An important source of examples arises as follows.

Lemma 12.10. Let X and Y be smooth projective variety and let Z ⇢ X ⇥
Y be a degree c correspondence from Y to X, i.e. Z is an equidimensional
subvariety of X ⇥ Y of dimension dim X � c. Let p : Z ! X, q : Z ! Y be
induced by the two projections. Suppose that there is a surjection

p!
�q⇤ : Hm�2c(Y ; Q) ⇣ Hm(X; Q).

Then Hm(X) has level  m� 2c and GHC(X, m, c) holds.

Proof. Let ⌫ : Z̃ ! Z be a resolution of singularities. We have a factorisation
of p!

�q⇤:

Hm�2c(Z̃; Q)! Hm(X; Q),
x??

Hm�2c(Y ; Q)! Hm�2c(X ⇥ Y )! Hm�2c(Z)

where the first three maps are induced by the projection X ⇥ Y ! Y , the
inclusion Z ! X ⇥ Y and ⌫ respectively. The last map is the Gysin map for
Z̃ ! X. By assumption this last map is surjective and since it is a morphism
of type (c, c), the image has level  m� 2c. ut
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Examples 12.11. Known examples come from surjective Abel-Jacobi maps.
The situation is as follows. We have a smooth projective variety X of di-
mension 2m � 1 and a relative family Z ! S of (m � 1)-cycles on X over
a smooth variety S which are cohomologically trivial. By the universal prop-
erty of the Albanese variety, the Abel-Jacobi map S ! Jm(X) factors over
Alb(S) = Js(S) ! Jm(X), s = dim S and the basic assumption is that the
last map is surjective. Its tangent map F sH2s�1(S) ! FmH2m�1(X) is in-
duced by the homomorphism p!

�q⇤ on the level of cohomology. The assumption
implies that this homomorphism is also surjective. To apply the Lemma we
need to have a degree m� 1 correspondence, but this is only the case if S is a
curve. So in this case GHC(X, 2m�1, m�1) follows. In the general situation,
we can take repeated hyperplane sections until we get a curve C. Restricting
Z ! S to this curve gives a Gysin map H1(C) ! H2s�1(S) ! H2m�1(X),
where the first map comes from the inclusion C ,! S. The Lefschetz hyper-
plane theorem (C.15) tells us that this map is a surjection. The lemma now
shows that the entire cohomology H2m�1(X; Q) is supported on the image
C ! X of this curve and the result follows.
Geometric examples include :

1) The lines on a cubic threefold X form a surface, the Fano surface F and
the Abel-Jacobi map J1(F ) ! J2(X) is surjective. Hence GHC(X, 3, 1)
holds. This result is due to Clemens and Gri�ths [C-G].
2) The same holds for the Abel-Jacobi map for the Fano variety of lines on
the quartic threefold. See [Tj72], [B-M] and [Let].
3) Let X be a complete intersection of two or three quadrics and dim X =
2m� 1. There is a family of codimension m-cycles whose Abel-Jacobi map
is surjective and so GHC(X, 2m � 1, m � 1) holds. This is due to Tjurin
[Tj75].
4) Let X be a cubic 5-fold. Collino has shown [Coll] that there is a fam-
ily of planes on X with surjective surjective Abel-Jacobi map so that
GHC(X, 5, 2) holds.

Theorem 12.12 (Main result). Let X be a smooth projective variety of
dimension n + 1 and let Y be a generic hyperplane section of X. Suppose
either that n is even or that the restriction map Hn(X) ! Hn(Y ) is not an
isomorphism. Let us assume moreover that

1) GHC(Y, n� 1, p� 1) holds;
2) The variable middle cohomology Hn

var
(Y ; Q) of Y is supported on a codi-

mension p subvariety of Y .

Then GHC(X,n + 1, p) holds.

Proof. Assume that Y is the generic fibre of some Lefschetz pencil. We recall
the set-up of § 4.5.4. So, if B is the base locus of the pencil, the blow up
X̃ = BlBX fibres as

f : X̃ ! P
1.
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The non-critical values of f form a Zariski open j : U ,! P
1 over which we

have the local system V of classes of the vanishing cocycles. The assumptions
ensure that Theorem 4.26 applies.

The middle cohomology of X is a direct summand of the middle coho-
mology of X̃. It is part of the three-step Leray filtration L• on Hn+1(X̃; Q).
Indeed, by Remark 4.28) the Leray filtration satisfies

L1Hn+1(X̃; Q) = Hn+1(X; Q),
L2Hn+1(X̃; Q) = Hn�1(Y ; Q)(�1)

in accord with splitting of Hodge structures

Hn+1(X; Q) = Hn�1(Y ; Q)(�1)�H1(j⇤V).

so that H1(j⇤V) = L1/L2 ⇠= (L2)? \ L1. All these isomorphism are isomor-
phisms of Hodge structures.

Assumption 1) implies that the generalized Hodge conjecture is true for L2

and so it needs only to be verified for (L2)? \L1 for which we use the second
assumption. Since the stalk at u 2 U 0 is the variable cohomology of the fibre
Yu, this assumption says that provided u is generic, there is a codimension p
cycle Zu on Yu such that

Im(Hn

Zu
(Yu)! Hn(Yu)) � Vu. (XII–1)

The cycles Zu do not necessarily fit together to a global cycle on X̃, but, as
will be shown shortly, there exists a codimension p cycle Z on X̃ which is
flat over P

1 such that for generic u the intersection of Z with Yu contains Zu

as a component. Replacing Zu by this (possibly larger) cycle, the assertion
(XII–1) is still true and we are going to show that the cycle Z in fact supports
(L2)? \ L1. But let us first show how to construct the cycle Z. Consider
the family over P

1 consisting of the Chow varieties of e↵ective codimension p
cycles in the fibres Yu of f : X̃ ! P

1. Over the complement of a countable
set these form an algebraic fibre bundle. So this bundle has a multi-section
passing through the point corresponding to Zu. This multi-section sweeps out
the desired cycle Z, fitting into the commutative diagram

Z �������! X̃

P
1

@

@@R

�

�� 

g f

h

Let � : Z̃ ! Z be a resolution of singularities and we put h̃ := h��. We are
going to show that the image of Gysin map for h̃,

Hn+2�2p(Z̃)
h̃!��! Hn+1(X̃),
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contains (L2)? \ L1. We do this by showing that this Gysin map induces a
surjection on the relevant part of the Leray spectral sequences:

h̃! : H1(P1, Rn+1�2pg̃ ⇤Q) ⇣ H1(P1, Rnf⇤Q) = H1(P1, j⇤V). (XII–2)

Indeed, the induced map on the Leray-filtrations induces L1(g̃)! L1(f) and
if this becomes a surjection on GrL

1
, the image of h̃! contains (L2f)? \L1f as

wanted.
To show (XII–2), recall (formula VII–2) that the image of the Gysin map

Hn+1�2p(Z̃u) ! Hn

Zu
(Yu) ! Hn(Yu), u generic, is the same as the image

of Hn

Zu
(Yu) ! Hn(Yu). Our assumption (XII–1) can thus be formulated in

terms of the image of this Gysin map. Indeed, letting j0 : U 0 ,! P
1 be the

inclusion of the Zariski open subset of P
1 over which both f and g are smooth,

the Gysin maps fit together to give a morphism of local systems

h̃! : W := j0
⇤
Rn+1�2pg̃⇤Q! j0

⇤
Rnf⇤Q.

Now assumption (XII–1) means that the image of this map contains V|U 0. But
more is true: since h̃! is a morphism of polarized variations of Hodge structures
we can use complete reducibility (Theorem 10.13) and hence the local system
V|U 0 is a direct factor of j0⇤Rnf⇤Q. If we project onto this factor we obtain a
surjective morphism of (polarizable) variations of Hodge structures ' : W!
V|U 0. Again by complete reducibility, we obtain a direct sum decomposition
W ⇠= Ker'� V|U 0. So h̃ : Z̃ ! X̃ induces a surjection

H1(j0⇤W) ⇣ H1(j0⇤(V|U 0)) = H1(j⇤V). (XII–3)

Secondly, observe that the adjunction morphism

Rn+1�2pg̃⇤Q! j0⇤j
0⇤Rn+1�2pg̃⇤Q = j0⇤W

is an isomorphism away from the critical values of g̃. Hence the induced map

H1(Rn+1�2pg̃⇤Q) ⇣ H1(j0⇤W)

must be a surjection. Combining this and the surjection (XII–3) yields the
desired surjection (XII–2). ut

Examples 12.13. The first remark one should make is that for X a complete
intersection of dimension (n+1) in projective space, the Lefschetz hyperplane
theorem C.15 implies that for k 6= (n + 1) the cohomology groups Hk(X)
are either zero or induced by a linear section and so the Hodge conjecture is
only interesting in the middle dimension. For the same reason, for complete
intersections the first hypotheses in Grothendieck’s principle is always verified.

1) The generalized Hodge conjecture for curves on a cubic threefold in P
4

is true. Indeed hypothesis (ii) is verified, since a general hyperplane section
Y is a cubic surface so that H2

var
(Y ) = H2

prim
(Y ) has pure type (1, 1) and

so is supported on a divisor.
The generalized Hodge conjecture in this case means that all of H3(X; Q)
(which itself is of level 1) is supported on a divisor.
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2) We use the previous example to prove the generalized Hodge conjecture
for curves on a cubic fourfold X in P

5. So n = 3, p = 1.
Indeed, all of H3(Y ) = H3

var
(Y ), Y a smooth hyperplane section of X, is

supported on a divisor inside Y by what we just proved.
Applying Remark 7.7 it also follows that the Hodge conjecture is true for
(2, 2)-classes.
3) Using Example 12.11 2), GHC(4, 1) and the Hodge conjecture for (2, 2)-
classes are true for X a quartic fourfold in P

5 (n = 3, p = 1).
4) Let X be a cubic 6-fold in P

7 so that n = 5, p = 2. Note that GHC(Y, 6, 2)
is true (Example 12.11 4)) so that GHC(X, 6, 2) is true as well as the
classical Hodge conjecture for (3, 3)-classes.
5) Using Example 12.11 3), we can inductively show GHC(X, 2m, m�1) and
the classical Hodge conjecture on (m, n)-classes for X an even-dimensional
intersection of 2 or 3 quadrics.
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Perverse Sheaves and D-Modules

In this chapter we discuss the general version of the Riemann-Hilbert correspon-
dence. We had a first glimpse before: see Remark 10.5 and also § 11.1.2. Here we
extend it to an equivalence (in the derived category) between constructible com-
plexes and certain types of D-modules. A crucial point here is a duality operator
which generalizes Poincaré duality on the constructible side.

In § 13.1 we introduce this duality operator, Verdier duality. Ordinary cohomol-
ogy is not preserved under this duality operator. Instead, one needs to work with
intersection cohomology. In the topological context this is explained in § 13.2.1. The
intersection complexes become self-dual after a shift in the degrees. After this shift
we obtain the perverse complexes treated in § 13.2.2.

The Riemann-Hilbert correspondence links perverse complexes to D-modules.
We give a brief introduction to these in § 13.3. An important example comes from
variations of Hodge structures. These D-modules are in addition filtered, and we
treat filtered D-modules in § 13.5. For the Riemann-Hilbert correspondence holo-
nomic D-modules play a central role, discussed in § 13.6. In that section we state
(without proof) the full Riemann-Hilbert correspondence.

13.1 Verdier Duality

In the context of general topological spaces one cannot hope for a good duality
theory generalizing Poincaré duality. However, as soon as the space is locally
compact and finite dimensional, there does exist such a generalization, but
only if one works in a suitable derived category; this is Verdier duality. We
explain this in this section, and we also explain how Verdier duality implies
the classical Poincaré duality theorems.

13.1.1 Dimension

For this subsection we follow [Bor84, V.1.B].
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Definition 13.1. Let X be a locally compact space. Its dimension dim(X)
is the smallest n 2 N [1 for which Hn+1

c
(X,F) = 0 for all sheaves F on X.

Examples 13.2. The dimension can be calculated using only constant sheaves
on open sets. A topological n-dimensional manifold has dimension n. More
generally, an n-dimensional pseudomanifold (see §C.1.1) is an n-dimensional
space. Any complex space of complex dimension n has dimension 2n.

On such spaces instead of the possibly unbounded Godement resolution we
can take its n-truncated complex

cC•Gdm
(F) := ⌧nC•Gdm

(F),

by definition the c-Godement resolution of F . As we show now, the sheaves
in this resolution are c-soft in the sense that sections on compact subsets of
X extend to the entire space:

Lemma 13.3. The c-Godement resolution of F is a c-soft resolution.

Proof. Godement sheaves being flabby are c-soft so we only need to see that
the last sheaf in the resolution, say B is a soft sheaf. From the exact sequence
(B–15) it follows that it is su�cient to show that for all open sets U we have
H1

c
(U,B) = 0. First note that, setting Zk = Ker(d : Ck

Gdm
(F) ! Ck+1

Gdm
(F)),

we have an exact sequence 0 ! Zk(F) ! Ck

Gdm
(F) ! Zk+1 ! 0 and hence

(B–14) shows that H1

c
(U,Zk) ' H2

c
(U,Zk�1) · · · ' Hk

c
(U,Z1) ' Hk+1

c
(U,F).

In particular, since Zn = B, we have H1

c
(U,B) = Hn+1

c
(U,F) which vanishes

by definition of the dimension. ut

In this calculation we used the crucial fact that c-soft sheaves are acyclic for
the functor �c of global sections with compact support ([Iver, II.Theorem
2.7]). From the above Lemma it then follows that the c-Godement resolution
is an acyclic resolution and hence, by the abstract De Rham theorem B.18 we
have

Hq

c
(X,F) = Hq (�c(X, cC•Gdm

(F))) .

A similar statement is true for complexes F• of sheaves of R-modules on X:

H
q

c
(X,F•) = Hq (s�c(X, cC•Gdm

(F•))) . (XIII–1)

13.1.2 The Dualizing Complex

Details and proofs of the results in this subsection can be found in [Iver, V,
VI] or [Bor84, V, 7].

We first assume that R is a field and explain how to dualize a complex of
R-modules C•. Referring to the definition of the Hom-complexes (A–10), we
set

DC• = Hom•

R
(C•, R),
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i.e. DCq = HomR(C�q, R) and d : DCq ! DCq+1 is (�1)q+1 times
the transpose of d : C�q�1 ! C�q. Let X be a topological space and
U ⇢ X any open subset and apply this construction to the complex of
compactly supported sections of the c-Godement resolution of the constant
sheaf R

X
|U , yielding a complex, say D•(U). For an inclusion j : V ,! U of

open sets the maps Dq(U) ! Dq(V ) induced by “extension by zero”-maps
�c(V, cC�q

Gdm
(R

X
))! �c(U, cC�q

Gdm
(R

X
)) define a presheaf-structure. Here one

uses that we are working with c-soft sheaves. In fact we even get a complex
of sheaves, the (topological or Verdier) R-dualizing complex Ve

DR
X

:
Ve

DR
X

(U) :=DC•, C• = �c(U, cC•Gdm
(R

X
)). (XIII–2)

If R is no longer a field, one has to assume that R has finite cohomological
dimension and choosing an injective resolution R• of R one defines DC• =
Hom•

R
(C•, R•). The same construction as before then goes through.

Example 13.4. Suppose that X is an n-dimensional topological manifold and
R = Z. Use the standard injective resolution 0 ! Z ! Q ! Q/Z ! 0 to
define Ve

DR
X

. This complex turns out to be quasi-isomorphic to the orien-
tation sheaf OrX , viewed as a complex in degree �n:

Ve
DZ

X

qis

⇠��!OrX [n].

In fact, by [Bor84, V, 7.10] Ve
DZ

X
[�n] is an injective resolution of the orien-

tation sheaf. Since X is orientable if the orientation sheaf is isomorphic to
a constant sheaf, for an orientable manifold we have

Ve
DZ

X
[�n]

qis

⇠��!Z
X

. (XIII–3)

We want to see the e↵ect of Verdier duality on cohomology. Using (A–21),
we find H

�q(X, Ve
DR

X
) = Ext�q(�c(X, R•

X
), R). For R a field the right hand

side equals HomR(Hq

c
(X;R), R), the R-dual for Hq

c
(X;R) which can be iden-

tified with HBM

q
(X;R). For R = Z this is conjecturally the case. It is certainly

the case when X is compact, since then Borel-Moore homology is the same
as singular homology. More generally [Bor-M, Thm. 3.8 and §5]:
Proposition 13.5. Let X be paracompact having a one-point compactifica-
tion which is a CW-complex, then there is a canonical identification (with
Z-coe�cients)

H
�q(X, Ve

DZ
X

) = HBM

q
(X)

H
�q

c
(X, Ve

DZ
X

) = Hq(X).

Remark 13.6. 1) This theorem applies to compact manifolds, or more gen-
erally, to complements of a closed submanifold of a compact manifold. In
particular we can take for X a complex algebraic manifold.
2) For an orientable manifold X of dimension n the last identity can be
rewritten as Hq

c
(X; Z) = Hq�n(X, Ve

DZ
X

) = Hn�q(X, Z) which is just the
ordinary Poincaré duality (Theorem B.24). Similarly, the first identity can
be rephrased as Poincaré duality for Borel-Moore homology (loc. cit.).
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13.1.3 Statement of Verdier Duality

For this subsection we refer to [Iver, Chap. VI] and also to [Bor84, V, 7].

The dualizing complex is a special case of a more general construction. To
explain this, again, for simplicity we assume that R is a field, and we leave the
modifications in the general case to the reader. First we define the R-dual for a
sheaf F of R-modules. Note that the complex cC•Gdm

(F) is a c-soft resolution
for F . Since c-softness was all that was needed to define good restriction maps
to get a presheaf, we may use in (XIII–2) the complex cC•Gdm

(F) instead
of cC•Gdm

(R
X

) and still obtain a complex of sheaves of R-modules on X,
the Verdier dual of F , denoted Ve

DX(F). In particular, applying this to the
constant sheaf we find back the dual complex.

More generally, we can define the Verdier dual Ve
DX(F•) for a complex

F• of sheaves as we now explain. Recall the construction of the tensor product
F•⌦G• given by formula (A–2) at the end of § A.1.1. Then the dual complex
for F• is the complex of sheaves given by

U 7! Ve
DX(F•;R)(U) :=DC•, C• = �c(U, cC•Gdm

(F•))).

Again, as in the special cases we treated before, “extension by zero” can be
used to define restriction maps giving a presheaf structure to each of the
constituents of this complex.

From the definition it follows that whenever F• is bounded, bounded
above, respectively bounded below, its dual is bounded, bounded below, re-
spectively bounded above. The Verdier duality functor thus yields:

Ve
DX : D�

✓
sheaves of R-
modules on X

◆
�! D+

✓
sheaves of R-
modules on X

◆
. (XIII–4)

The complex Ve
DXF• turns out to be isomorphic to the Hom-complex of

sheaves Hom•(F•, Ve
DXR

X
). At this point we recall that for any two sheaves

F , G of R-modules on X the sheaf Hom(F ,G) is defined by means of
the presheaf U 7! HomR(F(U),G(U)). Moreover, the construction of Hom-
complexes can also be done on the level of sheaves: for any two complexes F•

and G• of sheaves on X, the graded presheaf

U 7! Hom•(F•,G•)(U) :=Hom•

R
(F•(U),G•(U))

is made into a complex by using for d the same formula as for the usual
Hom-complexes (cf. Appendix A.2.1). The definition of the Verdier duality
isomorphism uses the following construction. Let U ⇢ X be an open set, F and
G two sheaves of R-modules on X, and S an R-module. For any s 2 � (U,F),
t 2 �c(U,G) the tensor product s ⌦ t belongs to �c(U,F ⌦ G) and we define
the natural map

HomR (�c(U,F ⌦ G), S)! HomR (F(U),HomR(�c(U,G), S))
h 7! {s 7�! {t 7! h(s⌦ t}}.

�
(XIII–5)

Now we can state:
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Proposition 13.7 (Verdier duality). Let X be a locally compact n-
dimensional space and let F• a bounded above complex of sheaves of R-
modules. The maps (XIII–5) for F = Fp, G = cCq

Gdm
(R

X
) and S = R induce

a natural isomorphism of bounded below complexes of sheaves of R-modules
on X

Ve
DX(F•) ⇠�! Hom•(F•, Ve

DR
X

).

13.1.4 Extraordinary Pull Back

For more details on the results in this subsection, we refer to [Iver, Chap. VI]
and [Bor84, V, 7].

If X and Y are locally compact and f : X ! Y any continuous map a proper
direct image functor f! can be defined which transforms sheaves of R-modules
on X to sheaves of R-modules on Y ; if f is proper, f! = f⇤, and if f is the
inclusion of an open subset, it has a right adjoint. See § B.2.5. The adjoint f !

cannot be defined in general; some finiteness assumption is needed. Here we
assume that X is finite dimensional. Then, for a given bounded below complex
G• of sheaves of R-modules on Y , using the bounded c-Godement resolution
of the constant sheaf R

X
the assignment

U 7! f !G•(U) :=Hom•

R
(f!
�j! cC•Gdm

(R
U

),G•), j : U ⇢ X the inclusion,

defines a bounded below complex f !G• of sheaves of R-modules on X. It
determines a functor between derived categories

f ! : D+

✓
sheaves of

R-modules on Y

◆
�! D+

✓
sheaves of

R-modules on X

◆
. (XIII–6)

It sends Db{sheaves of R-modules on Y } to Db{sheaves of R-modules on X}
and is called the extra-ordinary pull back.

Examples 13.8. 1) For the inclusion j : X ,! Y of an open subset this
functor j! coincides with j�1 of Appendix B (cf. (B–22)). For a closed
embedding i : Z ,! X functor i! as defined above, coincides with the
functor (B–33) of Appendix B.
2) Applying this to the case where Y is a point and G• = R•, observing that
R• = R in the derived category of bounded R-modules, we get:

Ve
DR

X
= a!

X
R, aX : X ! point. (XIII–7)

This can be used as a definition of the dualizing complex. Similarly,
Prop. 13.7 can be turned around and can be viewed as a definition for
the Verdier duality operation:

Ve
DX(F•) :=RHom•(F•, Ve

DR
X

). (XIII–8)

We can now formulate the most general form of Verdier duality:



306 13 Perverse Sheaves and D-Modules

Theorem 13.9 (Verdier duality II). Let f : X ! Y be a continuous map
between locally compact spaces of finite dimension and let R be a commutative
ring of finite cohomological dimension. Let F• be a bounded complex of sheaves
of R-modules on X, and let G• be a bounded above complex of sheaves of R-
modules on Y . Then there is a canonical isomorphism

RHom•(Rf!F•,G•) ⇠�! Rf⇤
�
RHom•(F•, f !G•)

�

in D+{sheaves of R-modules on Y }, i.e. f ! is a right adjoint for Rf!.

Since f !(Ve
DR

X
) = Ve

DR
Y

one deduces from Theorem 13.9 that un-
der duality the pair of adjoint functors (f�1, Rf⇤) is interchanged against
(f !, Rf!):

Corollary 13.10. Let f : X ! Y be a continuous map between locally com-
pact spaces of finite dimension. We have a diagram

Db

✓
sheaves of

R-modules on X

◆ f
�1

 ����
����!

Rf!

Db

✓
sheaves of

R-modules on Y

◆

x????y
Ve

DX
Ve

DY

x????y

Db

✓
sheaves of

R-modules on X

◆ f
!

 ����
����!

Rf⇤

Db

✓
sheaves of

R-modules on Y

◆
(XIII–9)

which incorporates two commutativity relations Rf⇤�Ve
DX = Ve

DY
�Rf! and

Ve
DX

�f�1 = f !�Ve
DY .

Remark 13.11. i) As a special case, when j : U ,! X is an open inclusion,
we have Ve

DU j�1F• = j�1Ve
DXF•, and if i : Z ,! X is the inclusion of

a closed subset, Ve
DX i⇤F• = i⇤Ve

DZF•.
ii) The theorem generalizes to the situation where f! has finite cohomo-
logical dimension, i.e. the fibres of f are uniformly bounded in dimension.
iii) Applying the duality isomorphism to the identity morphism f !G• !
f !G• we get a morphism Rf!

�f !G• ! G•. Taking G• = Ve
DR

Y
, since by

(XIII–7) f !Ve
DR

Y
= Ve

DR
X

, this morphism becomes

182007Rf!
Ve

DR
X
! Ve

DR
Y

(XIII–10)

which induces H
�q

c
(Y, Rf!

Ve
DR

X
)! H

�q

c
(Y, Ve

DR
Y

). Using (B–28) and
Prop. 13.5, in integral homology this gives back the usual induced map
in homology

f⇤ : Hq(X)! Hq(Y ) (XIII–11)

13.2 Perverse Complexes

13.2.1 Intersection Homology and Cohomology

In this subsection we fix a commutative ring R with 1.



13.2 Perverse Complexes 307

Complex algebraic varieties, and more generally, complex analytic spaces
embeddable in a compact analytic space as the complement of a closed sub-
space admit Whitney stratifications (see Property C.7, 2–3). By Cor. C.6 any
such analytic space X has the structure of an oriented pseudomanifold of di-
mension 2n where n is the complex dimension. More precisely, the strata of the
Whitney stratification combine to give a filtration X = Xn � Xn�1 � · · ·X0,
where Xk�Xk�1 is an oriented 2k-dimensional topological manifold. Its con-
nected components are the 2k-dimensional strata of the Whitney stratifica-
tion. We shall only consider such stratifications.

If one considers usual homology and cohomology there is no straightfor-
ward generalization of Poincaré-duality due to the presence of singularities.
Instead it is better to start with the constant sheaf on a dense smooth open
subset of X and then extend it successively on the singular locus as a com-
plex of sheaves, the intersection complex as we now explain. We consider
more generally a local system V of R-modules on the dense open smooth sub-
set U1 = X � Xn�1 of X. We view X as the increasing union of open sets
U1 ⇢ U2 · · · ⇢ Un+1 = X where

Uk = X �Xn�k, j0

k
: Uk ,! Uk+1. (XIII–12)

Definition 13.12. Let V be a local system of R-modules on U1. The asso-
ciated intersection complex IC•

X
V is inductively defined as follows. Set

IC•
X

V = V on U1 and, assuming IC•
X

V defined on Uk set

IC•
X

V|Uk+1 = ⌧k�1Rj0

k⇤
(IC•

X
V|Uk)

Its hypercohomology groups are the intersection (co)homology groups with
coe�cients V

IHBM

k
(X; V) = IH2n�k(X; V) := H

2n�k(X, IC•
X

V).

Similarly, we define intersection (co)homology with compact support with
coe�cients V

IHk(X; V) = IH2n�k

c
(X; V) := H

2n�k

c
(X, IC•

X
V).

If V = R
U1

one conventionally just writes IHBM

k
(X;R) = IH2n�k(X;R)

respectively IHk(X;R) = IH2n�k

c
(X;R).

Remark 13.13. 1) Intersection (co)homology seemingly depends on the strat-
ification. We shall explain below (see Theorem 13.19) that this is not the
case.
2) What we explained above is the so-called “middle perversity” intersection
complex. There are other perversities as well, but the middle perversity is
the only one behaving well under Verdier duality. See Cor. 13.20.
3) Intersection complexes (for any perversity) can also be defined for any
pseudomanifold.
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13.2.2 Constructible and Perverse Complexes

In this subsection R denotes a field of characteristic 0.
As in the previous subsection, let X = Xn � Xn�1 � · · ·X0 be an n-

dimensional Whitney-stratified complex space. For any given local system V

on X � Xn�1 the intersection complex IC•
X

V is an example of a (weakly)
constructible complex.

Definition 13.14. i) A sheaf F of R-modules on X is weakly con-
structible if there exists a stratification such that the restriction of F to
each stratum is a locally constant sheaf; it is constructible if, moreover,
its stalks are finitely generated R-modules;
ii) a bounded complex F• of sheaves on X is (cohomologically) con-
structible the sheaves Hq(F•), q 2 Z are constructible with respect to
some stratification. We set

Db

cs
(X;R) :=

8
<

:

derived category of
constructible complexes of
sheaves of R-modules on X

9
=

; . (XIII–13)

iii) A cohomologically constructible complex F• of sheaves on X is called
perverse if, setting Sk = Xk �Xk�1, the following two conditions hold

For all x 2 Sk one has Hj(F•)x = 0, j > �k;
For all x 2 Sk one has Hj

c
(F•)x = 0, �j > �k.

�
(XIII–14)

Here we have set
Hj

c
(F•)x := lim

 �
U

H
j

c
(U,F•),

where U runs over the open neighbourhoods of x in X .

We next summarize the behaviour of constructible and perverse sheaves
under duality and under morphisms. For proofs see for instance [Kash-S, § 8.4,
§ 8.5] or [Bor84, Chap. V, 8 –10]:

Proposition 13.15. i) On complex analytic spaces the Verdier duality
operator preserves cohomological constructibility.
ii) Let f : X ! Y be a morphism between complex analytic varieties. The
functors f�1 and f ! preserve cohomological constructible complexes. If
f is proper or a morphism between complex algebraic varieties, Rf⇤ and
Rf! preserve ( cohomological) constructible complexes.

Remark 13.16. In general the functors f�1, f !, Rf⇤ and Rf! do not preserve
perversity and we need to work with constructible complexes. For instance,
given a constructible complex F• of R-modules on a complex analytic variety
X and a closed subvariety i : Z ,! X, the adjunction triangle relating the
morphisms induced by i and j : X � Z ,! X is a distinguished triangle in
Db

cs
(X;R):
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Ri⇤i!F• ������! F•

Rj⇤j�1F•
S

S
So ◆

◆
◆/

↵Z,X(F
•
)[1] (XIII–15)

Note that the above definition of perversity uses the stratification. However, if
for some x 2 Sk we have Hj(F•)x 6= 0, we must have j  �k. Recall that the
closure of the set {x 2 X | Hj(F•)x 6= 0} is the support of the sheaf Hj(F•).
By the very definition of constructibility it is the closure of a stratum and so
contained in Xk for some k. So dim(SuppHj(F•)) = k  �j. If R is a field,
we can rephrase the second condition using Verdier duality. Verdier duality
preserves constructibility by Prop. 13.15. Also, by [Bor84, V.9.7] we have
Hj

c
(F•)_

x
= H�j(Ve

DXF•)x. It follows that the closure of {x | Hj

c
(F•)x 6= 0}

coincides with the support of H�j(Ve
DXF•). So, replacing j by �j we get

the same condition for the support of Hj(Ve
DXF•). Summarizing, we have:

Lemma 13.17. Assume that R is a field of characteristic zero. Let F• be
a bounded complex of sheaves of R-modules which is cohomologically con-
structible. Then it is perverse if and only if the following two conditions hold:

dim SuppHj(F•)  �j (the support condition);
dim SuppHj(Ve

DXF•)  �j (the cosupport condition).

In particular F• is perverse if and only if its Verdier-dual is perverse and the
notion of perversity does not depend on the chosen stratification.

Example 13.18. 1) If i : Z ,! X is the inclusion of a closed subvariety and
F• perverse on Z, then by Remark 13.11.i) its extension i⇤F• to X is
perverse. By the same remark, of j : U ,! X is the inclusion of an open set
and G• perverse on X, then j�1G• is perverse on U .
2) The constant sheaf Q

X
on a complex manifold is not perverse, but Q

X
[n]

is. More generally, the complex Q
X

[n] is perverse on a locally complete
intersection variety X. The support condition for Q[n] is empty. The co-
support condition states that the complex dimension of the locus of points
x such that Hn+k

c
(Ux, Q) 6= 0 for all su�ciently small neighbourhoods Ux

of x should at most be k. Assume that X has been stratified. By Prop. C.8
for x on a stratum of dimension d, for all su�ciently small neighbourhoods
U of x, we have Hk

c
(U, Q) = 0 unless k = n+d, n+d+1, 2n. The cosupport

condition then follows.

Motivated by this last example, we consider any local system V over a dense
open subset of the regular locus of a complex variety X of pure dimension dX

and introduce its perverse extension to X of V

⇡
VX := IC•

X
V[dX ].

It is indeed a perverse complex and hence has an intrinsic meaning. In fact
we have
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Theorem 13.19 ([Bor84, Chap.V, 4]). Let X be an n-dimensional strat-
ifyable complex space and let U be a dense smooth Zariski open subset of X
on which we have a a local system of R-modules of finite rank V. The complex
⇡
VX is up to quasi-isomorphism the unique perverse complex of sheaves of

R-modules on X which restricts over U to V[n] and which has no non-trivial
perverse sub- or quotient complexes with support on X � U .

Remark. A word of warning. In the topological setting of n-dimensional
pseudo-manifolds of [Bor84] the perversity is an increasing function [2, n] !
Z�0 and the intersection complex itself is called perverse. In the analytic set-
ting, perversities are decreasing functions 2N ! Z and they are normalized
by setting p(0) = 0. We stick to the latter convention. The middle perversity
⇡ then is given by ⇡(2k) = �k (instead of by ⇡(2k) = ⇡(2k� 1) = k� 1). We
leave it to the reader to make the translation.

Corollary 13.20. We have Ve
DX(⇡

VX) = ⇡(V_
X

).

Proof. By Theorem 13.19 ⇡
VX is perverse and hence, by Lemma 13.17 so is its

Verdier dual. It has no trivial perverse sub- or quotient complexes with support
on X � U . So, again by Theorem 13.19 it is a shifted intersection complex,
i.e. of the form ⇡

WX for a local system on a suitable open subset of X. Since
restriction to open sets commutes with the Verdier dual (Remark 13.11 i.) we
have WX = V

_
X

. ut
By Corollary 13.20 the dual of an intersection complex is again an inter-

section complex (up to a shift); this implies:
Proposition 13.21. There is a natural isomorphism

IHk(X; V_) ⇠�! IHBM

2n�k
(X; V)_.

Remark. a) In addition, [Bor84, V, 9.16] states that the above isomor-
phism is induced by the natural pairing

IHk(X; V_)⌦ IHBM

2n�k
(X; V) �! R

which therefore is non-degenerate.
b) We have sketched a proof for R a field; the assertion remains true
for a commutative ring with unit. See [Bor84, Ch. V].

We shall now explain why the R-perverse complexes on X form an abelian
category which we shall denote Perv(X;R).
Lemma 13.22. The category Perv(X;R) is an abelian category.

Proof. The category Db

cs
(X;R) inherits the triangulated structure from the

category of bounded complexes of R-sheaves on X. Let Db

cs
(X;R)0 respec-

tively Db

cs
(X;R)�0 be the subcategory whose objects are the complexes satis-

fying the support condition, respectively the co-support condition. By [B-B-D,
Ch. 2] this defines a t-structure (Def. A.21) whose core consists of the perverse
complexes. Since a core is an abelian subcategory this shows that Perv(X;R)
is abelian. ut
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The truncation functors for the t-structure in the preceding proof define the
perverse truncation functors ⇡⌧ . The perverse cohomology of any com-
plex F• in Db

cs
(X;R) are by definition the perverse objects obtained by ap-

plying the cohomology functor (A–18):

⇡Hk(F•) := ⇡⌧0
⇡⌧�0(F•[k]). (XIII–16)

Examples 13.23. i) If F• is itself perverse, then ⇡Hk(F•) = 0 unless k = 0
and then ⇡H0(F•) = F•.
ii) Let f : X ! Y be a smooth proper morphism between complex man-
ifolds and let V be a local system on X. The direct image Rf⇤V is a
complex of sheaves whose cohomology sheaves Rkf⇤V are locally con-
stant and we have ⇡Hk(Rf⇤V) = Rfk�m

⇤
V[m], where m = dim Y . The

terms in the Leray spectral sequence then read

H
p(X, ⇡Hq(Rf⇤V)) = H

p(X, Rq�mf⇤V[m]) = Hp+m(X, Rq�mf⇤V)
(XIII–17)

We next consider functors on the category of perverse complexes: Every
additive functor T between triangulated categories equipped with t-structures
induces a functor tT (see formula (A–20)) between the cores of the categories.
If T is a t-exact functor one of course has tT = T . As remarked in Exam-
ples 13.18 the two functors f�1 for an open embedding and f⇤ for a closed
embedding are t-exact in the perverse setting. In this setting we will rather
use ⇡T to denote the functor between the perverse complexes associated to a
functor T between complexes of sheaves. As an example, let X be a complex
variety and let j : U ,! X the inclusion of some dense open smooth subset,
then

⇡j!Q
U

= j!(Q
U

[dX ])

and similarly for ⇡j⇤Q
U

. Since we have a natural morphism j! ! j⇤ of functors
we can define the perverse intermediate direct image functor

⇡j!⇤F• = Im[⇡j!F• ! ⇡j⇤F•], F• 2 Perv(U ;R) (XIII–18)

which produces a perverse complex out of a perverse complex F•. Using these
notions, we have the following description of the intersection complex which
does not make use of stratifications [B-B-D, § 0]:

Proposition 13.24. Let X be a complex variety, Z ⇢ X an equidimensional
subvariety of X, and V a local system of finite dimensional R-vector spaces
defined over an open dense subset U of Z consisting of smooth points of Z.
With i : Z ,! X and j : U ,! Z the inclusions the intersection complex
IC•

X
V[dZ ] is equal to

⇡
VZ := i⇤(⇡j!⇤V) = i⇤(j!⇤V[dZ ]), dim Z = dZ . (XIII–19)

Motivated by this proposition we introduce:
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Definition 13.25. Let X, Z ⇢ X , and V as before. Then, using the above
notation (XIII–19), ⇡

VZ is called the perverse extension of the local system
V to X.

Remark. Strictly speaking, the perverse extension of a local system is not an
extension of the system, but only of the system viewed as a complex put in a
suitable degree.

In case Z is irreducible and V comes from an irreducible representation
of ⇡1(U), its perverse extension to X is a simple object in the category
Perv(X;R). Here we recall that an object in an abelian category is simple if
it has no non-trivial sub objects and quotient objects. An abelian category is
called artinian if every object admits a Jordan-Hölder sequence, i.e. a finite
filtration whose successive gradeds are simple. To see that ⇡

VZ is indeed sim-
ple, note that it is clearly simple over the largest open subset U ⇢ Z on which
V is locally constant, and by the characterization of the intersection complex
(Prop. 13.18), it has no perverse sub-objects or quotient-objects supported on
the complement of U in Z.

Lemma 13.26 ([B-B-D]). If F• 2 Perv(X;R) and F• is cohomologically
constructible with respect to a finite stratification of X, then F• admits a
Jordan-Hölder sequence. In particular, if X is complex algebraic, Perv(X;R)
is artinian. The simple objects F• are the intersection complexes ⇡

VZ sup-
ported on an irreducible subspace Z ⇢ X and where V is associated to an
irreducible representation of ⇡1(U), U ⇢ Z the largest open subset of Z over
which F• is locally constant. They are perverse on Z as well as on X.

So, by Prop. 13.24, if X is a complex algebraic variety, an R-perverse complex
admits a finite filtration such that the successive quotients are exactly the
intersection complexes ⇡

VZ supported on some irreducible subvariety Z of X
which are associated to an irreducible local system V of R-vector spaces on a
dense open subset of Z contained in the regular locus of Z. Since Perv(X;R)
is abelian, we can consider its Grothendieck group (Def. A.4):

Corollary 13.27. The Grothendieck group K0(Perv(X;R)) is generated by
the classes of ⇡

VZ , where Z ⇢ X is an irreducible algebraic subvariety and
V an irreducible local system defined over a dense open subset of Z contained
in the regular locus of Z.

13.2.3 An Example: Nearby and Vanishing Cycles

We recall briefly the set-up from § 11.2.3. Let X be a complex manifold and
consider a one-parameter degeneration f : X ! �, i.e. over the punctured
disk �⇤ = ��{0} the map f has maximal rank. Fix a ring R. With reference
to the diagram (XI–13) for any bounded below complex K• of R-modules on
X we have introduced the complex of nearby and vanishing cycles, defined by
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 fK• = i⇤Rk⇤k
⇤K•

�fK• = Cone•(sp).

Let us recall (see (XI–16)) that the specialization morphism sp : i⇤K• !
 fK• is the morphism induced by the natural map K• ! Rk⇤k⇤K•. We fix
a Whitney stratification of X adapted to the map f in the sense that the
open stratum is X�X0. Suppose from now on that K• is (analytically) coho-
mologically constructible (Def. 13.14). From the description of the retraction
map as given in § 11.2.3, it is clear that if the Whitney stratification is such
that the cohomology sheaves of K• are constant along strata, also its nearby
cohomology sheaves will be constant along the same strata. Since a given
stratification can be refined to Whitney stratification, we can always assume
this (property C.7.2). Moreover, the preceding description of the specializa-
tion map shows that then also its vanishing cohomology is constant along the
strata. In other words, we have shown:

Proposition 13.28. Let X be an analytic space, f : X ! � a surjective ana-
lytic map, K• a bounded below complex of sheaves of R-modules on X with con-
structible cohomology. Then its nearby and vanishing cohomology sheaves are
constructible as well, i.e. the cohomology of  fK• and �fK• is constructible.

Perversity is a much deeper property. In fact, there are shifts, and we cite
a result, due to O. Gabber [Bry]:

Proposition 13.29. In the setting of the previous proposition, if K• is a per-
verse complex, the complexes �fK•[�1] and  fK•[�1] are perverse on X0.

13.3 Introduction to D-Modules

13.3.1 Integrable Connections and D-Modules

Let X be a complex manifold. Germs of vector fields on X are standard
examples of di↵erential operators of order  1. Multiplication with germs
of holomorphic functions give 0-th order di↵erential operators. Together, as
a sheaf of OX -algebras they generate the sheaf DX of di↵erential operators
on X. More precisely, we can recursively define this sheaf as follows. A local
section P of EndC(OX) is said to be a di↵erential operator

– of order 0 if it is multiplication with a germ g 2 OX , i.e. Pf = gf for all
f 2 OX ;

– of order  m (for m a positive integer) if for all germs g 2 OX the operator

f 7! P (gf)� gP (f)

has order  (m� 1).
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We let F ord

m
DX denote the sheaf of di↵erential operators of order  m and

DX =
[

m�0

F ord

m
DX ⇢ EndC(OX).

Using multi-index notation I = {i1, . . . , in}, |I| =
P

k
ik, in local coordinates

(U, z1, . . . , zn) an m-th order di↵erential operator can be uniquely written as

P =
X

|I|m

PI@
I , PI 2 OX(U), @I = @i1

1
· · · @in

n
.

We define its m-th order symbol as

�m(P ) := =
X

|I|=m

⇠I 2 Symm(TX)(U), ⇠j = [@/@zj ].

Clearly �m induces isomorphisms

[�m] : GrF
ord

m
DX

⇠�! Symm

OX
(TX). (XIII–20)

and
[�] : GrDX

⇠�! Sym(TX). (XIII–21)

We observe:

Lemma 13.30. Let ⇡ : T_X ! X be the holomorphic cotangent bundle of X.
Then the sheaf GrF

ord

DX can be identified with the subsheaf ⇡⇤OT_X which
which restrict to a polynomial on the cotangent space T_

x
X for each x 2 X.

A sheafM of leftDX -modules is called aDX-module, or, if no confusion is
possible, a D-module. So M admits a left multiplication with germs of vector
fields, or, in other words, we obtain a Lie-algebra representation. Conversely,
there is a unique way of extending a Lie-algebra representation to a D-module:

Lemma 13.31. Let X be a complex manifold and M an OX-module. Then
there is a 1-1 correspondence between

a) (left) DX-module structures on M,
b) OX-linear homomorphisms of sheaves of Lie algebras

⇢ : TX ! HomCX (M,M). (XIII–22)

satisfying Leibniz’ rule

⇢(✓)(fm) = ✓(f)m + f⇢(✓)m

for local sections f, ✓,m of OX , TX , M respectively.

For M a locally free OX-module, these structures correspond to an integrable
connection on M.
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Example 13.32. a) The structure sheaf OX is a trivial example of a DX -
module: if ⇠ is a local holomorphic vector field on X then ⇠(f) = d⇠f ,
the directional derivative of f in the direction of ⇠.
b) There is an action of TX on k-forms given by the Lie-derivative.
Given a local holomorphic k-form ↵ on X Lie derivation along a local
vector field ⇠ on X produces a k-form L⇠(↵).

L⇠(↵) = di⇠(↵) + i⇠d↵,

where i⇠ stands for contraction. It is well known that L⇠ is indeed
a derivation, i.e. satisfies the Leibniz rule. Likewise, one has L[⇠,⌘] =
[L⇠, L⌘], i.e. this gives a Lie-algebra homomorphism. However, for all
f 2 OX , one has

Lf⇠(↵)� fL⇠(↵) = df ^ i⇠↵

Lf⇠(↵)� L⇠(f↵) = �i⇠(df ^ ↵).

The first formula shows that the Lie-algebra homomorphism is not OX -
linear and we don’t have a connection. The last formula shows that for
top-degree di↵erential forms ! the right action !⇠ = L⇠! becomes
OX -linear. In order to obtain a Lie-algebra action of TX we need to
change signs by letting ⇠ act as �L⇠ since then �L[⇠,⌘] = [�L⌘,�L⇠].
We reserve a special notation for this right DX -module:

!X :=⌦dX
X

, dX = dim(X). (XIII–23)

13.3.2 From Left to Right and Vice Versa

Many examples of DX -modules come naturally as right D-modules and so it is
useful to be able to pass from right DX -modules to left DX -modules and vice-
versa. Locally, one can do this by inverting the order of di↵erential operators,
but this does not work well globally. To achieve this, we use the right DX -
module !X from (XIII–23). It can indeed be used to turn left DX -modules
M into right DX -modules by tensoring on the left by !X . The action

(! ⌦m)⇠ :=!⇠ ⌦m� ! ⌦ ⇠m

extends to a right DX -module structure on

Mrgt :=!X ⌦OX M.

Similarly for any right DX -module N , we obtain a left DX -module structure
on N left := HomOX (!X ,N ) by putting

(⇠�)(!) :=�(!⇠)� �(!)⇠, ⇠,! germs of a section of T (X), resp. !X

� germ of a section of N left.
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The last two constructions give an equivalence between the categories of left
and right DX -modules. The results of these two operations are also called the
left-right and right-left transforms.

For tensor product and homomorphisms the following rules apply. The
proofs are left to the reader.

Observation 13.33. Given two left D-modules, M and N the Leibniz rule
makes the tensor product M⌦OXN over the structure sheaf into a D-module.
Similarly, the module HomOX (M,N ) is a left DX -module by the rule

(⇠�)(m) = ⇠(�(m))� �(⇠m),

where � is a germ of an OX -homomorphism from M to N , ⇠ is a local vector
field and m a local section of M. For tensor products over DX some care must
be taken. For example, consider R ⌦DX L, where R is a right DX -module,
and L has a left action. Then the result in general is only an OX -module
structure; the vector fields no longer act.

13.3.3 Derived Categories of D-modules

Let X be a complex manifold of dimension n and let M be a (left) DX -
module.. The category of DX -modules has enough injectives (see Exam-
ple A.22.1)) so that we can derive all left exact functors. For instance, we
can derive the Hom-functor. To do this, first recall that A

� stands for the
category opposite to A, i. e having the same objects as A put with all arrows
reversed. We now put

D�(DX -modules)� ⇥ D+(DX -modules)! D+(sheaves of CX -modules)
(N • , M•) 7�! RHomDX (N •,M•),

which can be represented by the complex Hom•(N •, I•(M•)) with I•(M•)
an injective resolution of M•.

We also need to derive the left tensor product. We have seen (Obser-
vation. 13.33) that tensoring right by left D-modules in general only gives
OX -modules. A boundedness property (see [Kash-S, §2.6]) then guarantees
that there is a well defined bi-functor

Db(Drgt

X
-modules) ⇥ D+(DX -modules)! D+(sheaves of OX -modules)

(N • , M•) 7�! N • ⌦L
DX

M•.

In examples we often have explicit finite resolutions coming from the De Rham
complex (X–3) of some D-module M:

DRX(M) =
h⇣
M! ⌦1

X
(M)! · · ·! ⌦dX

X
(M)

⌘i
[dX ], (XIII–24)

where the derivatives in the complex come from the integrable connection
associated to the D-module structure. For example, by [Bor87, § VII.3.5], the
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Rham complex of DX is a locally free left resolution of !X (XIII–23) by right
DX -modules. So, if M is a (left) DX -module, we have

DRX(M) = !X ⌦
L

DX
M

which motivates to define for any bounded below complex M• of DX -modules

DRX(M•) :=!X ⌦
L

DX
M•. (XIII–25)

The shift dX is the same as the shift needed to turn a local system into a
perverse complex (Theorem 13.19), tying in with the Riemann-Hilbert cor-
respondence, as we see later (Theorem 13.61). This (modified) De Rham
complex is a bounded complex of OX -modules whose maps are only CX -
linear.

Definition 13.34. The dualizing left D-module is the module

D⇤
X

= HomOX (!X ,Drgt

X
) = Drgt

X
⌦OX !�1

X
.

where we view it as a left-module via right-left transform of the right DX -
module structure on DX . Call this the natural left-structure. The left-
structure on DX persists on the dualizing module and is called the supple-
mentary left-structure.

Using the supplementary left structure on this module, given a left DX -module
M the dual module

M⇤ :=HomDX (M,D⇤
X

) (XIII–26)

gets the structure of a left DX -module. When working in the derived category
it is conventionally put in degree �dX ; in fact the definition can be extended
to bounded complexes of DX -modules as follows

DX(M•) :=RHomDX (M•,D⇤
X

)[dX ]. (XIII–27)

This dual complex indeed turns out to be a bounded complex of (left) DX -
modules. Applying the De Rham functor to this construction gives [Bor87,
VI.9.7]:

DRX(DX(M•)) = RHomDX (M•,OX)[dX ]. (XIII–28)

13.3.4 Inverse and Direct Images

Let f : X ! Y be a holomorphic map between complex manifolds. Set

dX = dim X, dY = dim Y, dX/Y = dimX � dim Y.

Recall that for any OY -module N , the analytic inverse image is defined as

f⇤N = OX ⌦f�1OY
f�1N .
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When N is a left DY -module we want to make this OX -module into a left
DX -module. So let ⇠ be a local holomorphic vector field on X. The image f⇤⇠
can be viewed as a local section of the inverse image f�1T (Y ) and it acts on
f⇤N by the chain rule ⇠(u⌦ n) = ⇠(u)⌦ n + u⌦ f⇤⇠(n), where u is a germ of
a holomorphic function on X and n a local section of f�1N .

We need an alternative procedure which is better suited for the derived
category. It uses the transfer module

DX!Y := f⇤DY (XIII–29)

This is not only a left DX -module, but also has a natural right f�1DY -module
structure; we say that DX!Y has a (DX , f�1DY )-bimodule structure. It
can be tensored on the right by any left f�1DY -module such as f�1N and
produces a left DX -module. This gives an alternative definition of the inverse
image

f⇤N = DX!Y ⌦f�1DY
f�1N (XIII–30)

which extends to the derived category as

f ! : D+(DY -modules) ! D+(DX -modules)
N • 7! DX!Y ⌦

L

f�1DY
f�1(N •)[dX/Y ].

(XIII–31)

Example 13.35. Let u : � ! X be a holomorphic map of the unit disk to
X and let M be a DX -module seen as an OX -module with a connection r.
We have defined the pull back connection u⇤r using formula (XI–10). The
corresponding D�-module is u⇤M, and, when viewed as a complex in degree
�dX/Y is u!M. By Remark 11.6, this holds more generally for any smooth
curve u : C ! X mapping to X.

Using the (DX , f�1DY )-bimodule DX!Y , the direct image for right D-
modules R is easy to define:

f+R := f⇤R⌦DX DX!Y .

We have seen that the tensor product in general admits no D-module struc-
ture. Here however the right module structure on the transfer module persists
so that the direct image is a right DX -module.

To define the direct image for left D-modules, we need the transfer mod-
ule DY X which is a (f�1DY ,DX)-bimodule. It is defined as follows. First
recall (Def. 13.34) that the dualizing left D-module D⇤

X
has two left-module

structures, the natural left-structure and the supplementary left-structure. So
the inverse image f⇤D⇤

Y
of the dualizing D-module has a left DX -structure,

coming from the natural left-structure on D⇤
Y

but retains the left f�1DY -
structure coming from the supplementary left-structure on D⇤

Y
. Using the

relative canonical bundle

!X/Y :=(f⇤!Y )�1 ⌦ !X ,
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we can transfer the left DX -structure to the right, obtaining the sought after
(f�1DY ,DX)-bimodule

DY X := f⇤(D⇤
Y

)⌦OX !X = f⇤DY ⌦OY !X/Y . (XIII–32)

Tensoring on the right with a left DX -module M produces the left f�1DY -
module

DRX/Y (M) :=DY X ⌦DX M (XIII–33)

Next we consider the adjoint mapping (B–23) (as a map of sheaves of rings)

DY ! f⇤f
�1DY .

Here f⇤ is the topological direct image. The adjoint mapping makes the
topological direct image f⇤A of an f�1DY -module A on X into a left DY -
module on Y which we denote by f̃⇤(A). In particular, applying this to
A = DRX/Y (M) defines the direct image

f+M := f̃⇤ (DY X ⌦DX M) ,

again a left DY -module. This extends to the derived category as follows

f+ : D+(DX -modules) ! D+(DY -modules)
M• 7! Rf̃⇤

⇣
DY X ⌦

L

DX
M•

⌘
.

(XIII–34)

The cohomology sheaves of these complexes (the higher direct images) are
often denoted as follows

Z
q

f

M :=Rqf+M = Hq(f+M).

We use the duality operator to define the two remaining functors f+, f! asso-
ciated to f , i.e.

f+ := DX
�f !�DY f! := DY

�f+
�DX .

In other words, we get a diagram

D+(DX -modules)
f
+

 ����
����!

f!

D+(DY -modules)
x????y

DX DY

x????y

D+(DX -modules)
f
!

 ����
����!

f+

D+(DY -modules)

(XIII–35)

analogous to the topological version (XIII–9).
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13.3.5 An Example: the Gauss-Manin System

Let f : X ! S be a proper submersion between complex manifolds. Consider
the p-th direct image of the DX -module OX , which is the Gauss-Manin
system Rpf+OX . Since f is a submersion, one can easily show that the
shifted relative De Rham complex (Def. 10.25)

DR•

X/S
(OX) :=⌦•

X/S
[dX/S ]

is a locally free resolution of the transfer module DS X ([Pham, Lemme
14.3.5]) and hence, by the definition of the direct image we conclude that the
Gauss-Manin system equals Rpf⇤(DR•

X/S
(OX)) as an OS-module. It carries a

D-module structure in the guise of a flat connection uniquely determined by
its sheaf of locally constant sections, the local system Rp+dX/S f⇤CX

. In other
words, up to a shift in degree, this is exactly the Gauss-Manin connection.

More generally, consider direct images of any (left) DX -module M given
by a flat connection r : M ! ⌦1

X
⌦OX M. The Koszul filtration Kozq ⌦•

X

induces on ⌦•

X
⌦OX M the filtration Kozq ⌦•

X
⌦OX M. We have

Grq

Koz
(⌦•

X
⌦M) = f⇤⌦q

S
⌦⌦•�q

X/S
M.

As in Thm. 10.28, the connecting morphism in the long exact sequence relating
Gr0

Koz
and Gr1

Koz
yields a flat connection which is again called Gauss-Manin

connection

rGM : Rpf⇤⌦
•

X/S
M! ⌦1

S
⌦OS Rpf⇤⌦

•

X/S
M.

This connection gives Rpf⇤⌦•

X/S
M the structure of a left DS-module, which

in the derived category of bounded complexes of DS-modules computes the
(p + dX/S)-th direct image sheaf Rp+dX/S f+M. To get rid of this shift, one
uses the shifted relative De Rham complex

DR•

X/S
(M) :=⌦•

X/S
⌦OX M [dX/S ],

a complex of left f�1(DS)-modules placed in degrees �dX/S , . . . , 0. Using it,
we thus find Z

p

f

M = Rp(f+M) = Rpf⇤(DR•

X/S
M).

13.4 Coherent D-Modules

We shall speak of OX -modules and (left or right) DX -modules if we mean a
sheaf of OX -modules or a sheaf of (left or right) DX -modules.
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13.4.1 Basic Definitions

Let us first recall that OX is a sheaf of noetherian rings. This is by no means
trivial. See for instance [Gu-Ro, Chap. II.C]. In particular, if F is an OX -
module, its stalk Fx at x 2 X is Noetherian (i.e. finitely generated) if and
only if it is finitely presented in the sense that there is an exact sequence.

Oq

X,x
! Op

X,x
! Fx ! 0.

However, if F is locally finitely generated, it need not be finitely presented
over any smaller set. Coherence is a property that guarantees that this.

Definition 13.36. An OX -module F is coherent if it is first of all locally
finitely generated, i.e. every point has a neighbourhood U over which there
exists a surjection

Op

U
! F|U ! 0,

and secondly if every homomorphism Oq

U
! F|U has a kernel which is locally

finitely generated.

It is a deep theorem due to Oka that OX is coherent [Gu-Ro, Chap. IV.C].
This implies (as can be seen easily) that F is a coherent OX -module if and
only if it is locally finitely presented.

Let us now pass to DX and left DX -modules. We can and do use the same
definition for coherence as before:

Definition 13.37. A DX -module M is coherent if it is first of all locally
finitely generated, i.e. every point has a neighbourhood U over which there
exists a surjection

Dp

U
!M|U ! 0,

and secondly if every homomorphism Dq

U
!M|U has a kernel which is locally

finitely generated.

From the fact that OX is coherent it is not hard to see [Bor87, II.§3] that DX

is coherent (as a left-DX -module) and from this one deduces the following
lemma.

Lemma 13.38. A D-module is coherent if and only if it is locally finitely
presented: locally over an open subset U ⇢ X we have an exact sequence of
D(U)-modules

D(U)q ↵�! D(U)p !M(U)! 0.

This presentation is related to the following di↵erential system on U :
P

q

j=1
Aijuj = 0 (Aij) = matrix of ↵ with respect to

the standard bases. (XIII–36)

If one associates to u = (u1, . . . , uq) 2 O(U)q the homomorphism
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'u : D(U)q ! O(U)

(P1, . . . , Pq) 7!
X

Pj(uj)

the map 'u factors over M(U) if and only if u is a solution of the system
(XIII–36). In this way we get a 1–1 correspondence

Solutions of (XIII–36) !1-1 Sol(M(U)) :=HomD(U)(M(U),O(U))

This example motivates the following definition.

Definition 13.39. Let M be a coherent DX -module. Its solution module
is the DX -module

Sol(M) :=HomDX (M,OX).

In the derived category Db

coh
(DX), this leads to the solution complex

Sol(M•) :=RHomDX (M•,OX)[dX ].

Recalling (XIII–28)) we see that we have

Sol(M•) = DRX(DXM•). (XIII–37)

Examples 13.40. 1) The structure sheaf OX is a left DX -module, generated
globally by the section 1. In local coordinates (z1, . . . , zn) on an open set
U ⇢ X the kernel of the sheaf homomorphism ev : DX ! OX given by
P 7! P (1) is generated by the vector fields @1, . . . , @n. Hence OX is a DX -
module locally of finite presentation, and therefore a coherent DX -module.
A coordinate invariant description of Ker(ev) can be given as follows. The
sheaf TX of germs of holomorphic tangent vectors is locally free of rank
n over OX . Hence the tensor product DX ⌦OX TX is a locally free left
DX–module. The map P ⌦ ✓ 7! P✓ defines a homomorphism of left DX -
modules DX ⌦TX ! DX and it represents Ker(ev). This shows that OX is
a coherent DX -module.
2) Every locally free DX -module of finite rank is coherent.
3) Every OX -coherent DX -module M is locally free as an OX -module. To
see this, it su�ces to show that Mx is a free OX,x-module for any x 2 X.
Let mx denote the maximal ideal of OX,x and choose elements e1, . . . , er in
Mx which map to a C-basis of the fibre

M(x) :=Mx/mxMx.

By Nakayama’s lemma, Mx is generated by e1, . . . , er. These generators
form a free basis. We prove this by contradiction. Indeed, if not there would
be a relation

P
r

i=1
fiei = 0 such that not all the fi are zero. Let k to be the

minimum of the orders of vanishing at x of fi. We call this minimum the
order of the relation. For simplicity, assume that f1 realizes this minimum.
We arrive at a contradiction as follows. We cannot have k = 0, since in
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that case the classes of the ei in M(x) become dependent. On the other
hand, if k > 0, we can reduce order of the relation: choose i such that in
local coordinates, @if1 vanishes to order k � 1 at x (this is possible since
the relation is of order k). Then, writing @iej =

P
k
bjkek, we find

0 = @i

� sX

j=1

fjej

�
=

�
@if1 +

sX

k=1

fkbk1

�
e1 +

sX

j=2

�
@ifj +

sX

k=1

flbkj

�
ej

which is a relation of lower order. This contradiction indeed shows that M
is locally free as an OX -module.
4) Let MX denote the sheaf of germs of meromorphic functions on X. This
is a DX -module which is not locally of finite type.

13.4.2 Good Filtrations and Characteristic Varieties

Let X be a complex manifold of dimension n and M be a DX -module.

Definition 13.41. A filtration on M is an increasing and exhaustive (M =S
p
FpM) sequence of OX -submodules (FpM)p2Z such that F ord

r
DX [FpM] ⇢

Fp+rM 8r, s 2 Z. It is called a good filtration if moreover

1) every point has a neigbourhood on which FpM = 0 for all p ⌧ 0, and
such that for all r � 0 one has F ord

r
DX [FpM] = Fp+rM;

2) each FpM is a coherent OX -module.

A filtered D-module is a D-module equipped with a good filtration.

Basic examples of good filtrations are given by variations of Hodge structure
(Def. 10.6):

Example 13.42. Let V be a local system on S of real vector spaces of finite
dimension and suppose that V := V⌦OS underlies a real variation of Hodge
structures with Hodge filtration F•. The flat connection on V makes V into
a DS-module and the filtration given by F• is good, since the transversality
condition ensures that F ord

1
DXFk ⇢ Fk+1.

For every coherent DX -module M a good filtration exists locally on X:
starting from a local presentation

L
aDX

v�!
L

bDX

u�!M ! 0 one can
put FpM := u(�bF ord

p
DX) for p � 0 while FpM = 0 for p < 0. Then

F ord

r
DX [FpM] = Fp+rM for all r, p 2 Z. Conversely, if M locally possesses a

good filtration, M is coherent.
To test if a given filtration is good, the following Lemma is useful (see

[Bor87, II.4]. To state it, recall (XIII–21) that GrDX is the graded sheaf of
rings associated to DX with respect to the order filtration. Similarly, we set

GrF M =
M

k

Grk

F
M.
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Lemma 13.43. Let (M, F ) be a DX-module equipped with a filtration. Then
F is good precisely when GrF M is coherent as a GrDX-module.

It is also important (and easy to show) that any two good filtrations F and G
on a given DX -module M are locally commensurable in the sense that locally
there exist two integers a and b such for all p 2 Z we have Fp�aM ⇢ GpM ⇢
Fp+bM. Using this, one proves

Proposition 13.44. Let I(M, F) be the annihilator of GrF M. Then
p
I(M,F)

does not depend on the choice of the good filtration F on M.

Proof. Let P 2 DX be of order m and let ↵ = �m(P ) be its symbol. For some
integers a, b we have Fp�a ⇢ Gp ⇢ Fp+b. Suppose that ↵s 2 I(M,F ). Then
P ksFr ⇢ Fr+ksm�1 for all r 2 Z and hence

P ksGp ⇢ P ksFp+b ⇢ Fp+b+ksm�k ⇢ Gp�1+ksm

as soon as k � a + b + 1 and then ↵k 2 I(M, G). ut

Since locally good filtrations F exist, we deduce from this that there exists
a globally defined sheaf of ideals

p
I(M) ⇢ Gr(DX) which locally coincides

with
p
I(M, F ). Recall (Lemma 13.30) that Gr(DX) consists of the sheaf of

functions on the total space of the holomorphic cotangent bundle of X which
are polynomial on each fibre. The zeros of the ideal

p
I(M) thus define a

subvariety of the cotangentbundle, the characteristic variety of M, which
in each fibre is a cone. It will be denoted

Char(M) :=
[

x2X

V (
p
Ix) ⇢ T (X)_. (XIII–38)

We finally remark that if we have a good filtration F on M, the characteristic
variety can also be seen as the support of the sheaf GrF (M) ⇢ Gr(DX) (inside
the cotangent bundle).

Examples 13.45. 1) Let M = OX . Then a good filtration is given by FpM =
0 for p < 0 and FpM = M for p � 0. The same procedure holds if M
is a DX -module which is coherent as an OX -module. The characteristic
variety of such a DX -module is the zero section of the cotangent bundle.
Conversely, suppose that the characteristic variety of M consists of the zero
section. Then for local coordinates (z1, . . . , zn) on U ⇢ X, considering the
di↵erentials dzj as local functions wj on the total space of the cotangent
bundle, (z1, . . . , zn, w1, . . . , wn) give a set of local coordinates on T_(U) '
U⇥C

n. Then
p
I(M) is generated by (w1, . . . , wn). This means that GrF M

is killed by a power of the ideal (w1, . . . , wn) and hence is a finitely generated
OU -module. Hence M is itself a finitely generated OX -module i.e. M is a
coherent OX -module and hence locally free by Ex. 13.40. 3).
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2) Let D ⇢ X be a submanifold of codimension one. Recall

OX(⇤D) :=
[

m

OX(mD),

the sheaf of meromorphic functions on X, holomorphic on X�D and having
a pole along D. Let M = OX(⇤D)/OX and put FpM = 0 for p < 0 and
FpM = OX(pD)/OX if p � 0. This defines a good filtration on M. If
ND|X = OX(D)/OX is the normal bundle of D in X, then GrF

p
(M) =

0 for p  0 and GrF

p
(M) ' N⌦p

D|X
for p > 0. Let (z1, . . . , zn) be local

coordinates on X such that D is given by z1 = 0. Let �(z1) be the class
of z�1

1
modulo OX . Then �(z1) locally generates GrF (M) over Gr(DX) '

OX [w1, . . . , wn]. The annihilator ideal of this generator is generated by
z1, w2, . . . , wn. Hence Char(M) is the conormal bundle of D in X, i.e.
the subspace of T_(X) consisting of pairs (x,↵) such that the covector ↵
vanishes on tangent vectors to D.
3) Let

0!M0 !M!M00 ! 0

be an exact sequence of DX -modules. If two of these are coherent, the third
one is coherent too. In that case, we have

Char(M) = Char(M0) [ Char(M00).

Applying this to the defining sequence for OX(⇤D)/OX it follows that the
characteristic variety of OX(⇤D) is the union of the zero section and the
conormal bundle of D.
4) The order filtration on DX is a good filtration. We see that I(DX , F ord)
is the zero ideal, so the characteristic variety of DX is the whole cotangent
bundle.

13.4.3 Behaviour under Direct and Inverse Images

There is no reason for the inverse image or the direct image of a coherent
D-module to be coherent. We quote

Proposition 13.46. Let f : X ! Y be a proper holomorphic map between
complex manifolds and let M be a coherent DX-module admitting a global good
filtration (Def. 13.41). Then the cohomology sheaves of the complex f+M are
coherent.

The proof uses Grauert’s coherence theorem [Gr60] and can be found in
[Ma-Sa, Lect. 3]. In the special case of a closed embedding we have [Bor87,
§ VI.7.11]:

Theorem 13.47 (Kashiwara’s equivalence). Let i : X ,! Y be the em-
bedding of a smooth closed subvariety X into Y . Then i+ induces an equiv-
alence between coherent DX-modules and coherent DY -modules with support
on X.
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In the codimension 1 case, in local coordinates (t, x1, . . . ) for which the
submanifold X is given by the equation t = 0, and if M has support on X we
put M0 = {m 2M | t ·m = 0}, a DX-module. Then

M = i+(M0) =
M

k�0

Mk, Mk = (@/@t)kM0,

and tk : Mk

⇠�!M0.

The behaviour under inverse images is more problematic as shown by the
following example: Y = C

n, X = C
n�1 and f is the closed embedding given

by identifying C
n�1 ⇢ C

n as the hyperplane zn = 0. Then the inverse image
of the coherent DY -module DY itself is given by OX⌦OY DY = DX [@zn ] which
is not coherent as a DX -module. We need the notion of a non-characteristic
map which we introduce now.

Let f : X ! Y be any holomorphic map and let df⇤ : T (X) ! f⇤T (Y )
the natural map. Dually we have the map df⇤ and the base change map ':

df⇤ : f⇤T_(Y )! T_(X)
' : f⇤T_(Y ) ! T_(Y )

�
. (XIII–39)

Introduce the conormal space to f

N_(X/Y ) :=Ker(df⇤) = (df⇤)�1(0-section of T_(Y )) ⇢ f⇤T_(Y ).

Note that this is not always a vector bundle, but it is if f has constant rank.
It intervenes in the following crucial notion.

Definition 13.48. One says that f is non-characteristic with respect to a
coherent DY -module N if f is transverse to the characteristic variety for N
in the sense that

N_(X/Y ) \ '�1(Char(N )) ⇢ (0-section of f⇤T_(Y )).

Equivalently

df⇤ : '�1 Char(N )! T_(X) is proper and finite onto its image.

Example 13.49. If f : X ! Y is everywhere submersive, f is non-characteristic
with respect to all coherent DY -modules.

If we have any good filtration F on N , we may consider the induced
filtration

F•(f⇤N ) = (DX!Y , F ord)⌦f�1DY
f�1(F•N ), (XIII–40)

where (DX!Y , F ord) = f⇤(DY , F ord). This should be interpreted as follows:

Fm(f⇤N ) = Image

"
X

p+q

F ord

p
(DX!Y , F ord)⌦f�1OY

f�1(FqN )

#
in f⇤N .

We have the following result by Kashiwara [Kash80]:
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Lemma 13.50. Let f : X ! Y be holomorphic and suppose that f is non-
characteristic with respect to the coherent DY -module N . Then f⇤N is coher-
ent. Moreover, if N admits a global good DY -filtration, the induced filtration
on f⇤N as defined above (XIII–40) is a good DX-filtration

13.5 Filtered D-modules

Up to now we assumed existence of a good filtration but we did not incorporate
it in our data. Now we consider pairs (M, F ) of a DX -module together with
a good filtration and study the corresponding category FDX . The morphisms
are those DX -linear maps which respect the filtration.

We first introduce the De Rham complex in the context of filtered mod-
ules. Loosely speaking, we consider ⌦k

X
as having filtering degree �k. More

formally, we introduce

F`(DR•

X
M) =

=
h
F`M! ⌦1

X
(F`+1M)! · · ·! ⌦dX

X
(F`+dXM)

i
[�dX ].

)
(XIII–41)

This defines a filtration of DR•

X
M by subcomplexes, the filtered De Rham

complex DR•

X
(M, F ). It is a filtered complex of OX -modules whose mor-

phisms are only CX -linear.

Examples 13.51. 1) Let M = OX with the trivial one-step filtration i.e.
F�1OX = 0, F0OX = OX . Then the filtration of the De Rham complex
is the usual trivial filtration � (Example A.34.1) re-indexed to make it
increasing:

DR•

X
(OX ,�) = (⌦•

X
,�)[dX ]

2) Consider !X (XIII–23) as a right DX -module with one-step filtration
FdX�1!X = 0, FdX!X = !X .

13.5.1 Derived Categories

The category FDX of filtered DX -modules is an additive category in which
every morphism has a kernel, coimage, image and cokernel. However, the cat-
egory is not abelian (see Example A.5.1) but in Appendix A.3.1 it is explained
how to circumvent this problem so that one can still define the corresponding
derived category (see Def. A.36). Observe that the existence of a good filtra-
tion F on a DX -module M implies that M is a coherent DX -module and
that the FkM are OX -coherent submodules; hence the cohomology sheaves
of complexes of filtered DX -modules are automatically coherent OX -modules.
This explains the notation

Db

coh
(FDX) :=

⇢
derived category of bounded
complexes of filtered DX -modules

�
.
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13.5.2 Duality

For details and proofs in this section we refer to [Sa88, §2.4].
The dualizing left DX -module D⇤

X
= HomDX (!X ,Drgt

X
) is naturally fil-

tered by the order filtration on Drgt shifted by �dX because of the sheaf
!�1

X
:

F ord

p
D⇤

X
= HomDX (!X , F ord

p�dX
DX) = F ord

p�dX
DX ⌦ !�1

X
.

We view this at the same time as a complex in degree �dX and we shall write
this succinctly as

(D, F )⇤
X

= (DX , Ford)⌦ !�1

X
[dX ].

If M is a filtered DX -module, its dual module M⇤ = HomDX (M,D⇤
X

), as a
Hom sheaf, is filtered in a natural way as well:

Fp(M⇤) :={� 2 HomDX (M,D⇤
X

) | 8i, �(Fi(M) ⇢ F ord

p+i
D⇤

X
}.

Assuming (as we do) that F is good, then it turns out that this dual filtration
is good and we let (M, F )⇤ be the resulting filtered module. To have a duality
operator compatible with the non-filtered case (XIII–27) we place the module
(M, F )⇤ in degree �dX so that we get a complex:

DX(M, F ) :=(M, F )⇤[dX ] = [HomDX ((M, F ), (D, F )⇤
X

)] [dX ].

This extends as an involution DX to the filtered derived category Db

coh
(FDX).

13.5.3 Functoriality

Let X ! Y be a holomorphic map between complex manifolds. We have
already defined (§13.3.4) the operators f⇤, f̃⇤ on the level of D-modules as well
as their extensions f ! and f+ to the derived categories of bounded complexes
of D-modules. Let us now extend these definitions to the filtered setting. We
start with the functor f̃⇤. In the non-filtered setting we defined f+M using
the transfer module DY X = f⇤DY ⌦OY !X/Y . Remembering the rule that
⌦k has filtering degree �k, the filtration by order on DY induces a natural
filtration

F ord

m
DY X := f⇤

�
F ord

m+dX/Y
DX

�
⌦OX !X/Y .

We then put the tensor product filtration on the relative De Rham module
(XIII–33):

DR•

X/Y
(M, F ) := (DY X , F ord)⌦DX (M, F )

which we consider as a complex in the derived category of bounded complexes
of filtered f�1DY -modules. Finally we apply f̃⇤:

f+(M, F ) :=[f̃⇤DR•

X/Y
M, f̃⇤F ]

However, this direct image filtration need not be exhaustive, i.e. the union of
subsheaves f̃⇤Fk need not be f̃⇤M and thus is not good. But, if f is proper
the filtration is exhaustive and good.
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Example 13.52. Suppose that f : X ! Y is of maximal rank, but not neces-
sarily proper. In § 13.3.5 we showed that in the derived category the transfer
module can be replaced by the “true” relative De Rham complex DR•

X/Y
(OX),

properly shifted to the left. As such it has a natural filtration just as the
ordinary De Rham complex: in (XIII–41) just replace ⌦•

X
by ⌦•

X/Y
. Since

Fm(DR•

X/Y
(OX)) is a resolution of F ord

m
DY X this shows that the two de-

scriptions are compatible in the derived category:

(DY X , Ford) = (⌦•

X/Y
,�)[dX/Y ] in Db(Ff�1DY ).

If moreover f is proper, we have

f+(OX ,�) = (f+⌦
•

X/Y
,�)[dX/Y ] in Db(FDY ). (XIII–42)

Example 13.53. Let aX : X ! pt be the constant map. By (XIII–42) the
filtered direct image (aX)+(OX ,�) gives the cohomology of X together with
the Hodge filtration (made increasing).

We end this section with a result concerning the De Rham functor. We
have seen that the morphisms of the De Rham complex of any DX -module are
only C

X
-linear. However, for a filtered DX -module, the morphisms in any of

the associated graded complexes are still OX -linear. This implies the following
result.

Lemma 13.54. Let K0(X) be the Grothendieck group for the category of co-
herent OX-modules. The De Rham functor induces the De Rham charac-

teristic

�DR(X) : K0(FDX)! K0(X)[u, u�1]
[(V, F )] 7!

P
(�1)j [GrF

j
DR•

X
(V, F )]uj .

�
(XIII–43)

This is compatible with proper pushforwards, in the sense that for f : X ! Y
a proper map between algebraic manifolds, we have a commutative diagram

K0(FDX) �! K0(X)[u, u�1]??yf+

??yf⇤

K0(FDY ) �! K0(Y )[u, u�1].

13.6 Holonomic D-Modules

13.6.1 Symplectic Geometry

The total space of the cotangent bundle ⇡ : T_X ! X of a complex manifold
X carries a natural 1-form ⇥: if ⌘ is a tangent vector at a point (x, ⇠) 2 T_X
we put ⇥(⌘) = ⇠[d⇡(⌘)]. The 2-form ! = d⇥ turns out to be a non-degenerate
skew-symmetric form: in local coordinates (z1, . . . , zn) on X, the di↵erentials
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dzj define local functions wj on T_X and (z1, . . . , zn, w1, . . . , wn) then give
local coordinates on the cotangent bundle in which ! =

P
j
dzj ^ dwj .

A complex symplectic manifold is a complex manifold U equipped with
a non-degenerate skew-symmetric 2-form !. It has even dimension 2n. For
any subspace V ⇢ TuU we put

V ? :={a 2 TuU | !(a, V ) = 0}.

and we say that V is isotropic, respectively involutive if V ⇢ V ?, respec-
tively V � V ?. Any isotropic subspace has dimension at most n and any
involutive subspace has dimension at least n. A maximal isotropic subspace
is called Lagrangian. A subvariety S of U is called involutive, respectively
Lagrangian, if TuS ⇢ TuU is involutive, respectively Lagrangian for all regu-
lar points u 2 S. An involutive submanifold of U is Lagrangian if and only if
dim U = n.

Returning to the cotangent bundle T_X, we can identify its tangent space
at any point (x, ⇠) 2 T_X with TxX ⇥ T_

x
X. The symplectic form restricts

on it as
[(t, ⌧), (t0, ⌧ 0)] 7! ⌧ 0(t)� ⌧(t0).

Then a subspace of the form A ⇥ B with A and B subspaces of TxX and
T_

x
X respectively, is Lagrangian precisely when B is the annihilator of A. If A

happens to be the tangent space to a submanifold Z ⇢ X, then B is exactly
the conormal space to Z at that point.

More generally, the conormal space of an irreducible subvariety Z ⇢ X by
definition is the closure inside T_(X) of the conormal bundle of its smooth
locus, and denoted

N_(Z/X) (the conormal space to Z in X).

It is Lagrangian since this is Lagrangian on the dense open subset of smooth
points of Z.

Conversely, any irreducible conical Lagrangian subvariety V of the cotan-
gent bundle T_(X) of some complex manifold X is the conormal space of the
analytic variety ⇡(V ), where ⇡ : T_(X)! X. To see this, we may assume that
V di↵ers from the 0-section of the cotangent bundle. Then we can pass to the
associated projective bundle PT_(X) in which V defines a subvariety V 0. The
projection ⇡0 : PT_(X) ! X being proper, the proper mapping theorem of
Remmert and Grauert [Gr60] then implies that ⇡0(V 0) = Z = ⇡(V ) is an an-
alytic subvariety of X. We need to see that its conormal space coincides with
V . By irreducibility, it su�ces to show this over a suitable dense open subset
of Z, for example the set of smooth points over which ⇡ has maximal rank. We
may thus assume that V and Z are smooth and that ⇡ : V ! Z has maximal
rank. Identifying the tangent space at a point (x, ⇠) of V with TxX ⇥ T_

x
X,

the tangent space to V is a Lagrangian subspace of the form TxZ ⇥B. Since
V is smooth and conical, B is the restriction of V to T_

x
X ⇢ T_X. Since V
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is Lagrangian, B is the annihilator of TxZ. But this means exactly that V is
the conormal bundle to Z.

Note also that if f : X ! Y is any holomorphic map between complex
manifolds and Z = f�1W is the inverse image of a complex subvariety W ⇢ Y ,
the map df : T_Y ! T_X induces (df)⇤ : f⇤N_(W/Y ) ! N_(Z/X) (see
(XIII–39)) which is an isomorphism over the points where f is has maximal
rank.

13.6.2 Basics on Holonomic D-Modules

It is a deep theorem that for a coherent DX -module M the characteristic
variety Char(M) ⇢ T_(X) is involutive. See [Malg79]. Hence the following
concept is natural.

Lemma-Definition 13.55. A coherent DX -module is holonomic if its char-
acteristic variety is Lagrangian, or, equivalently if

dim Char(M) = dX .

In that case, from what we said in § 13.6.1, the characteristic subvariety
Char(M) consists of the union of conormal spaces to irreducible subvarieties
of X.

The corresponding derived category is

Db

h
(DX) :=

8
<

:

derived category of bounded complexes
of coherent DX -modules with
holonomic cohomology sheaves.

9
=

; (XIII–44)

An object of this category is called a holonomic complex. So a holonomic
complex of (coherent) D-modules need not consist of holonomic modules; only
its cohomology sheaves should be holonomic.

Lemma 13.56 ([Bor87, VI.3.7]). A coherent DX-module M is holonomic
if and only if the complex DXM has only cohomology in degree 0; the resulting
map

M 7!M⇤ :=H0(DXM)

is an involution on the category of holonomic DX-modules. It extends to an
involution DX on the category Db

h
(DX).

Remark. A word of warning at this point: in [Bor87] the D-modules are al-
lowed to be quasi-coherent instead of coherent. We apply the theory only to
filtered D-modules which, as we have seen, are automatically coherent. In any
case, Borel shows that the derived category Db(coherent DX -modules) is the
same as the category of bounded complexes of quasi-coherent DX -modules
whose cohomology is coherent. So there is no loss of generality in restricting
to coherent DX -modules from the start.
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For proper direct images we have [Kash80]:

Proposition 13.57. Let f : X ! Y be a proper holomorphic map. Then f+

preserves complexes with coherent cohomology and sends holonomic complexes
on X to holonomic complexes on Y :

f+ : Db

h
(DX)! Db

h
(DY ).

Moreover, we have DY
�f+ = f+

�DX , i.e. the duality functor commutes with
direct image.

The functor f+ preserves the full subcategory of bounded holonomic com-
plexes of filtered holonomic D-modules.

For inverse images the basic result reads:

Proposition 13.58. Let f : X ! Y be a holomorphic map. Then f⇤ pre-
serves holonomicity. On complexes of coherent DY -modules with holonomic
cohomology sheaves the functor f⇤ extends to

f ! : Db

h
(DY )! Db

h
(DX).

The inverse image f⇤ behaves well on filtered modules provided f is non-
characteristic for N . Indeed, if this is the case, by Lemma 13.50 the inverse
f⇤(N , F ) is a filtered module. If moreover N is holonomic, essentially by the
previous Proposition 13.58, the module f⇤N is holonomic. For filtered holo-
nomic complexes a further condition is needed on the filtration. It is subsumed
in the following definition.

Definition 13.59. Let (N , F ) be a filtered DY -module. We say that (N , F )
is non-characteristic with respect to f : X ! Y if

1) f is non-characteristic with respect to N (see Def. 13.48);
2) T orf

�1
OY

k
(f�1 GrF N ,OX) = 0, k 6= 0.

A complex of filtered DY -modules is non-characteristic with respect to f if its
constituents are.

The second condition ensures that filtrations behave well under tensor prod-
ucts; we can in fact show ([Sa88, 3.5.2]):

Lemma 13.60. Let (N , F )• be a bounded complex of filtered holonomic DY -
modules. Suppose that (N , F )• is non-characteristic with respect to f : X !
Y . Then f !(N , F )• is a holonomic complex of filtered DX-modules.

13.6.3 The Riemann-Hilbert Correspondence (II)

The link between D-modules and perverse complexes is given by Kashiwara’s
theorem, one of the central ingredients of the Riemann-Hilbert Correspon-
dence: [Kash74]
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Theorem 13.61. Let X be a complex analytic manifold. The De Rham com-
plex of a holonomic DX-module is a perverse complex.

The version we are going to discuss is only valid in the algebraic setting
of algebraic D-modules on smooth (but not necessarily compact) complex
algebraic varieties. This guarantees finiteness properties of the inverse and
direct images of D-modules.

The central notion which generalizes regular connections is that of regular
holonomic complexes. We have seen that a connectionr on a smooth algebraic
variety U with good compactification X is regular if and only if for all compact
curves u : C ! X mapping to X and not contained in the boundary D =
X � U the pull back connection u⇤r is regular at all points mapping to the
boundary. Equivalently, by Remark 11.6 and Example 13.35, a DU -module
M is regular if and only if for all such maps u : C ! X, the complex u!M is
regular holonomic on a Zariski-open subset of C. This allows us to consider
directly maps of non-compact algebraic curves C into U so that we need
not mention any good compactification in what follows. Extending this to
complexes leads to the following definition.

Definition 13.62. Let M• be a holonomic complex on U , i. e. M• 2
Db

h
(DU ). We say that M• is regular holonomic if for all holomorphic maps

u : C ! U of a smooth irreducible curve C into U , the complex u!M• is
regular holonomic on C.

Remark. If (M, F ) is (regular) filtered holonomic, f̃⇤(M, F ) is (regular) fil-
tered holonomic as well.

We already saw (Lemma 13.56) that duality preserves holonomicity. It can
be seen to respect regularity as well. Also, by Prop. 13.58, if f : X ! Y is a
morphism between smooth complex algebraic varieties and N • is holonomic,
then also f !N • is holonomic. It is not hard to see that f ! preserves regular
holonomic complexes as well. As to f+, by Prop. 13.58 the direct image f+M•

of a holonomic complex under a proper map f is holonomic, and again reg-
ularity is preserved in this case. See [Bor87, VII.§12]. Summarizing, we thus
have:

Proposition 13.63. Regular holonomicity is preserved by f !, by duality, and,
for proper morphisms, by f+.

Extending the notation (XIII–44) to the regular situation, we set

Db

rh
(DX) :=

8
<

:

derived category of bounded complexes
of coherent DX -modules whose cohomology
sheaves are regular holonomic.

9
=

; (XIII–45)

The De Rham functor (XIII–25) produces out of any complex of DX -modules
a bounded complex of sheaves of complex vector spaces (though we deal with
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algebraic D-modules, for the De Rham functor we first pass to the associated
analytic D-modules).

By Kashiwara’s theorem 13.61 these complexes are certainly cohomolog-
ically constructible if the DX -modules are holonomic, and even perverse if
we have a single module in degree 0. Surprisingly, the Riemann-Hilbert cor-
respondence says that such a module must be quasi-isomorphic to a unique
regular holonomic complex of DX -modules. In fact, we even have:

Theorem 13.64 (Riemann-Hilbert correspondence (II)). Let X be a
complex algebraic manifold.

1) Recalling the notation (XIII–45) and (XIII–13), the De Rham functor

DRX : Db

rh
(DX) �! Db

cs
(CX)

is an equivalence of categories. Under this equivalence the regular holonomic
DX-modules correspond exactly to the category of C-perverse complexes. I.e.
the cohomology sheaves of a regular holonomic complex M• is concentrated
in degree 0 if and only if DRX(M•) is perverse.
2) Under the De Rham equivalence theVerdier duality operator Ve

DX (§13.1.3)
and the duality operator DX(XIII–27)correspond in the sense that DRX

�DX =
Ve

DX
�DRX . In particular, the solution complex of a holonomic complex

(XIII–37) is Verdier dual to its De Rham complex.

Let f : X ! Y be a morphism between smooth complex algebraic varieties.

1) We have a commutative diagram

Db

rh
(DY )

DRY����! Db

cs
(CY )??yf

!

??yf
!

Db

rh
(DX)

DRX����! Db

cs
(CX),

where f ! on sheaves of complex vector spaces stands for the extra-ordinary
pull back defined in § 13.1.4.
2) We have a commutative diagram

Db

rh
(DX)

DRX����! Db

cs
(CX)??yf+

??yRf⇤

Db

rh
(DY )

DRY����! Db

cs
(CY ),

where Rf⇤ is the usual (derived) direct image for sheaves of complex vec-
tor spaces defined in § B.2.5. In particular, Rf⇤ preserves cohomologically
constructible complexes, even if f is not proper (compare with Prop. 13.15).

A full proof can be found in [Bor87, VIII].



13.6 Holonomic D-Modules 335

Example 13.65. Let X be a compact complex manifold, let Y ⇢ X be a divisor
with normal crossings and let V be a complex local system on U = X � Y .
Under the Riemann-Hilbert correspondence the perverse complex ⇡

V corre-
sponds to a unique regular holonomic DX -module ⇡V, and

⇡V |U = V = V⌦C OU .

Let (Ṽ, r̃) be the unique extension of (V,r) to a holomorphic vector bundle
equipped with a holomorphic connection whose residues along the components
of D have eigenvalues in [0, 1) (see § 11.1.2). With j : U ,! X the inclusion,
let ⇡V be the DX -submodule of j⇤V generated by Ṽ. Then by [Kash-Ka87a,
Theorem 1.1]

DRX(⇡V) ' ⇡
V.

Remark 13.66. 1) Regular holonomic DX -modules form an abelian category,
whose Grothendieck group is the same as for Db

rh
(DX). The De Rham

functor induces an isomorphism

K0(Regular holonomic DX -modules) ⇠����!
DRX

K0(Perv(X; C)) (XIII–46)

2) It follows from this theorem and the definitions that the De Rham-functor
(on the level of regular holonomic modules) transforms the diagram induced
by (XIII–35)

Db

rh
(DX)

f
+

 ����
����!

f+

Db

rh
(DY )

x????y
DX DY

x????y

Db

rh
(DX)

f
!

 ����
����!

f!

Db

rh
(DY )

into the diagram (XIII–9).

Historical Remarks.
Historically, perverse complexes have been called perverse sheaves and have two

origins. Firstly, from the geometric side there is Deligne’s sheaf-theoretic treatment
of intersection homology. Secondly, the notion of a core of a triangulated category as
explained in the thesis of Verdier leads to constructible complexes of sheaves. The
latter point of view has been formalized in the basic work [B-B-D]. This point of
view explains why a perverse complex of sheaves as an object in an abelian category
behaves very much like a single sheaf, explaining the terminology perverse sheaf.

D-module theory started around 1970 with M. Sato’s introduction of algebraic

analysis and J. Bernstein’s work on the Bernstein-Sato polynomial. Kashiwara at
around 1980 founded the algebraic theory of micro-local analysis. The use of sheaf
theory turned out to be crucial in globalizing the theory; it has been especially e↵ec-
tive with regard to involutive systems. The Kashiwara-Malgrange filtration stems
from this period. It is important in studying monodromy around singularities by
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analytic means and is a crucial ingredient in M. Saito’s work on Hodge modules.
These topics will be treated in the next chapter.

The two are related through the Riemann-Hilbert correspondence. Our final
version of it is due to Z. Mebkhout, and this can be seen as the crowning achievement
in the theory of D-modules as it has been treated by the Grothendieck school.
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Mixed Hodge Modules

The definition of mixed Hodge modules is very involved. For this reason it is
more suitable to start with an axiomatic introduction. This makes it possible
to deduce important results rather painlessly, such as the existence of pure
Hodge structures on the intersection cohomology groups.

Hodge modules are generalizations of variations of Hodge structures. In
fact, a variation of Hodge structures is a basic example of a Hodge module. In
the world of Hodge modules the underlying (complexified) local system with
its integrable connection and filtration is to be considered as a filtered D-
module. The local system itself must be replaced by its perverse intersection
complex. In general, a Hodge module consists of a filtered D-module and a
perverse complex of Q-vector spaces such that the De Rham complex of the
D-module is isomorphic to the complexification of the perverse complex. In
addition a whole lot of extra properties have to be satisfied inductively which
makes it hard to verify them in concrete situations. The definition of a Hodge
module as well as some of its properties are given in § 14.3. Essential for
Hodge modules is the way they behave under the vanishing and nearby cycle
functors with respect to any locally defined holomorphic function. On the level
of D-modules this necessitates to introduce the so-called V -filtration which
encodes the action of the monodromy around the hypersurface (t = 0). This
is explained in § 14.2.

Mixed Hodge modules generalize Hodge modules in the same way as mixed
Hodge structures generalize Hodge structures. For the same reason mixed
modules have a better functorial behaviour. Since mixed Hodge modules over
a point are exactly the graded polarizable mixed Hodge structures, applying
the direct image functor to the constant map, by functoriality one obtains a
mixed Hodge structure on the cohomology groups. All of the mixed Hodge
structures on cohomology discussed in this book, and many more, can be
obtained in this way. We explain this briefly in § 14.1.
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14.1 An Axiomatic Introduction

14.1.1 The Axioms

We recall (XIII–13) that for any complex algebraic variety X the derived
category of bounded cohomologically constructible complexes of sheaves of
Q-vector spaces on X is denoted Db

cs
(X; Q) and that it contains as a full sub-

category the category Perv(X; Q) of perverse Q-complexes. The Verdier du-
ality operator Ve

DX is an involution on Db

cs
(X; Q) preserving Perv(X; Q). We

also recall that by Cor. 13.10, associated to a morphism f : X ! Y between
complex algebraic varieties, there are pairs of adjoint functors (f�1, Rf⇤) and
(f !, Rf!) between the respective derived categories of cohomologically con-
structible complexes which are interchanged by Verdier duality. Let us now
state the axioms:

A) For each complex algebraic variety X there exists an abelian cate-
gory MHM(X), the category of mixed Hodge modules on X with
the following properties:
– There is a faithful functor

ratX : Db
MHM(X)! Db

cs
(X; Q). (XIV–1)

such that MHM(X) corresponds to Perv(X; Q). We say that
ratXM is the underlying rational perverse sheaf of M . Moreover,
we say that

M 2 MHM(X) is supported on Z () ratXM is supported on Z.

– There is a faithful functor

DmodX : Db
MHM(X)! Db

coh
(DX). (XIV–2)

We say that DmodX(M) is the underlying DX -module.
– We demand that the triangle

Db
MHM(X)

ratX⌦C�����! Db

cs
(X; C)

Db

coh
(DX)

@

@
@R �

�
�✓
DRXDmodX

is commutative up to isomorphisms. More precisely, for each mixed
Hodge module M there is an isomorphism

↵ : ratX(M)⌦ C
⇠�! DRX [DmodX(M)] .

This isomorphism is called the comparison isomorphism.
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B) The category of mixed Hodge modules supported on a point is the
category of graded polarizable rational mixed Hodge structures; the
functor “rat” associates to the mixed Hodge structure the underlying
rational vector space.

C) Each object M in MHM(X) admits a weight filtration W such
that
– morphisms preserve the weight filtration strictly;
– the object GrW

k
M is semisimple in MHM(X);

– if X is a point the W -filtration is the usual weight filtration for
the mixed Hodge structure.

Since MHM(X) is an abelian category, the cohomology groups of
any complex of mixed Hodge modules on X are again mixed Hodge
modules on X. With this in mind, we say that for complex M• 2
Db

MHM(X) the weight satisfies

weight[M•]
⇢
 n,
� n

() GrW

i
Hj(M•) = 0

⇢
for i > j + n
for i < j + n.

We observe that if we consider the weight filtration on the mixed
Hodge modules which constitute a complex M• 2 Db

MHM(X) of
mixed Hodge modules we get a filtered complex in this category. More-
over, by assumption this filtration is strict in the sense of Lemma-
Def. A.35 and so the two functors H and GrW can be interchanged:

GrW

i
Hj(M•) = Hj(GrW

i
M•), 8 i, j 2 Z; (XIV–3)

There is a subtle point here: a priori the filtration W on the left is
the induced filtration coming from the weight spectral sequence, and
need not coincide with the intrinsic weight filtration on Hj(M•) as a
mixed Hodge module. However, the E1-terms (the terms on the right)
are pure mixed Hodge modules and hence the left hand side is pure as
well. So, by induction the filtration W on the left coincides with the
intrinsic weight filtration.

D) The duality functor Ve
DX of Verdier lifts to MHM(X) as an involu-

tion, also denoted Ve
DX , in the sense that Ve

DX
�ratX = ratX

�Ve
DX .

E) For each morphism f : X ! Y between complex algebraic vari-
eties, there are induced functors f⇤, f! : Db

MHM(X)! Db
MHM(Y ),

f⇤, f ! : Db
MHM(Y ) ! Db

MHM(X) interchanged under Ve
DX and

which lift the analogous functors on the level of constructible com-
plexes.

F) The functors f!, f⇤ do not increase weights in the sense that if M•

has weights  n, the same is true for f!M• and f⇤M•.
G) The functors f !, f⇤ do not decrease weights in the sense that if M•

has weights � n, the same is true for f !M• and f⇤M•.

By way of terminology, we say that M• 2 Db
MHM(X) is pure of weight n

if it has weight � n and weight  n, i.e. for all j 2 Z the cohomology sheaf
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Hj(M•) has pure weight j + n: only Grj+n

W
Hj(M•) might be non-zero. We

say that a morphism preserves weights, if it neither decreases or increases
weights. Since for a proper map f⇤ = f! axioms F) and G) entail:

H) For proper maps between complex algebraic varieties f⇤ preserves
weights.

14.1.2 First Consequences of the Axioms

We begin the study of complexes of negative or positive weight:

Lemma 14.1. a) Suppose that K• 2 Db
MHM(X) has weight � 0.

There is a surjective quasi-isomorphism K• ⇣ K̄• such that GrW

p
K̄q =

0 for q > p.
b) Suppose that K• 2 Db

MHM(X) has weight  0. There is an injective
quasi-isomorphism K̄• ,! K• such that GrW

p
K̄q = 0 for q < p.

Proof. We shall only prove a); the proof of b) is similar. From (XIV–3) we see
that for every p the complex GrW

p
K• has cohomology in degrees  p only.

We now make the following

Observation 14.2. Let L• be a bounded complex in an abelian category and
suppose that Hq(L•) = 0 for q > p. If Lp is semi-simple, there is a surjective
quasi-isomorphism L• ⇣ L̄• with L̄q = 0 for q > p. In fact, there exists an
acyclic subcomplex C• ⇢ L• such that the quotient complex is zero in degrees
> p.

Proof (of the observation). Since Lp is semi-simple, there is a direct sum-
decomposition Lp = Zp � Cp where Zp = Ker(dp). By assumption d :
Cp ⇠�! Im(dp) = Ker(dp+1) and so the complex C• which equals L• in degrees
> p, is equal to Cp in degree p and zero in degrees < p is acyclic. The quotient
complex by construction is zero in degrees > p. ut

Now apply the above to L• = GrW

p
K• starting with the smallest p = p0

for which WpK• 6= 0. Then the subcomplex C• in Observation 14.2 is a
subcomplex of K• itself. Replace K• by the quotient so that the new complex
which we continue to denote K• has the property Wp0

Kq = 0 for q > p0.
In the next step divide out the corresponding subcomplex C• of GrW

p0+1
K•.

By assumption, this subcomplex only lives in degrees � p0 + 1 and in these
degrees GrW

p0+1
K• = Wp0+1K• so that it is actually a subcomplex of K•. The

quotient complex, still denoted K• has the property that GrW

p0+1
Kq = 0 for

q > p0 + 1. Moreover, since we did not change K• in degrees < p0 + 1, we
still have that Wp0

Kq = 0 for q > p0 Continuing in this way, we obtain our
surjective quasi-isomorphism K• ! K̄• such that GrW

p
K̄q = 0 for q > p. ut

We say that M• has smaller weight than N• if for some n the complex
M• has weights  n while N• has weights � n + 1.
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Lemma 14.3. Suppose that M• has smaller weights than N•[p]. Then

Extp

DbMHM(X)
(M•, N•) = 0.

Proof. For simplicity of notation we omit the dots for complexes and we ab-
breviate D = Db

MHM(X). One may assume p = 0, since Extp

D
(M,N) =

HomD(M,N [p]) (see (A–23)). Now we need to show that the assumption on
weights implies HomD(M, N) = 0. By shifting the degrees we may assume
that M has weights  �1 and N has weights � 0. Apply Lemma 14.1 to
M [1] and N , obtaining quasi-isomorphic complexes M̄ [1] and N̄ respectively.
A morphism f : M ! N induces a morphism f̄ : M̄ ! N̄ which in the
derived category replaces f . For a fixed q we have WpM̄q = M̄q for p > q,
while WpN̄q = 0 for p  q. It follows from strictness that such a morphism
must be zero. ut

Corollary 14.4. If M• is pure of weight n, we have a (non-canonical) iso-
morphism

M• '
M

p

HpM•[�p].

Proof. If M• has weight n, ⌧pM• and Gr⌧

p
M• have weight n as well, because

Wk(⌧pM•) = ⌧pWk(M•), and similarly for Gr⌧

p
. Since ⌧p�1M•[1] has

weight n+1, we have Ext1(Gr⌧

p
M•, ⌧p�1M•) = Hom(Gr⌧

p
M•, ⌧p�1M•[1]) =

0, and hence, there is a non-canonical splitting

⌧pM
• ' ⌧p�1M

• �Gr⌧

p
M•.

Since by (A–27) the complex Gr⌧

p
M•is quasi-isomorphic to Hp(M•)[�p] the

result follows by induction. ut

If M• is a complex of mixed Hodge modules on X its cohomology HqM•

is a mixed Hodge module on X. A consequence of Axiom A) then is:

Lemma 14.5. The cohomology functors Hq : Db
MHM(X) ! MHM(X) are

compatible with the functor ratX in the sense that for any bounded complex
M• of mixed Hodge modules we have

ratX [HqM•] = ⇡Hq[ratXM•],

i.e. we need to work with the perverse cohomology functor (XIII–16).

Axiom E) and B) imply:

Lemma 14.6. Let aX : X ! pt be the constant map to the point. For any
complex M• of mixed Hodge modules on X

H
p(X,M•) :=Hp((aX)⇤M•) (XIV–4)

is a mixed Hodge structure.
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Applying Lemma 14.5 (for a complex of sheaves over a point perverse
cohomology is ordinary cohomology) we find:

Corollary 14.7. Let M be mixed Hodge module whose rational component
is the perverse complex F•. Then the hypercohomology group H

p(X,F•) is
the rational vector space underlying H

p(X, M) and hence the former gets a
rational mixed Hodge structure.

We now want to explain how this leads to rational mixed Hodge structures
on ordinary and compactly supported cohomology by taking for M a suitable
Hodge module. To start with, from axiom A) and B) we see that there is a
unique element

Q
Hdg 2 MHM(pt ), rat(QHdg) = Q(0), (XIV–5)

the unique Hodge structure on Q of type (0, 0). The next lemma explains
how the various cohomology groups can be expressed using direct and inverse
image functors.

To simplify notation, for any morphism f of complex varieties we shall we
shall from now on write f⇤ and f! instead of Rf⇤ and Rf!.

Lemma 14.8. We have the following identifications

Hk(X; Q) = Hk(pt, (aX)⇤a⇤XQ)
H�k(X; Q) = Hk(pt, (aX)!a!

X
Q)

Hk

c
(X; Q) = Hk(pt, (aX)!a⇤XQ)

HBM

�k
(X; Q) = Hk(pt, (aX)⇤a!

X
Q)).

Moreover, if i : Z ,! X is a closed embedding, we have

Hk

Z
(X; Q) = Hk(pt, (aX)⇤i⇤i!a⇤XQ) = Hk(pt, (aZ)⇤i!a⇤XQ).

Proof. The first assertion assertion is the special case (B–21) for f = aX

and F• = Q
X

, while the second assertion is (B–28). The third and fourth
are Verdier dual to these. Indeed, Prop. 13.5 for Q-coe�cients states that
H
�q(X, a!

X
Q) = HBM

q
(X; Q) and H

�q

c
(X, a!

X
Q) = Hq(X; Q); now apply

again (B–21), respectively (B–28). For the last assertion we observe that
H

k(X, i⇤i!Q) = H
k(Z, i!Q) = Hk

Z
(X; Q) by (B–34). ut

Motivated by Lemma 14.8, using axiom D) and E) we do the same for the
complex of mixed Hodge modules Q

Hdg from (XIV–5).

Q
Hdg

X
:= a⇤

X
Q

Hdg 2 Db
MHM(X)

DQ
Hdg

X
:= a!

X
Q

Hdg 2 Db
MHM(X).

)
(XIV–6)

Since the axioms guarantee that the underlying rational component of these
two complexes is equal to Q

X
, respectively D(Q

X
), Cor. 14.7 implies:



14.1 An Axiomatic Introduction 343

Corollary 14.9. Let X be a complex algebraic variety and i : Z ,! X a
subvariety. The complexes of mixed Hodge modules (aX)⇤QHdg

X
, (aX)!DQ

Hdg

X
,

(aX)!QHdg

X
, (aX)⇤DQ

Hdg

X
, respectively i⇤i!Q

Hdg

X
put mixed Hodge structures on

cohomology, homology, cohomology with compact support, Borel-Moore homol-
ogy, and cohomology with support in Z respectively.

Remark 14.10. These mixed Hodge structures coincide with the ones con-
structed by Deligne and were discussed in Chap. 4 and 5. This is not hard to
prove if X is a smooth algebraic variety, or if X can be embedded in a smooth
algebraic variety. See the remark at end of [Sa90, § 4.5]. It is true in general,
but highly non-trivial since Saito’s approach does not work well in the setting
of cubical or simplicial spaces. See [Sa00, Cor. 4.3].

As to functoriality, let f : X ! Y be a morphism of complex algebraic
varieties. Let M and N be bounded complexes with constructible cohomology
on X respectively Y . Consider the adjoint relations

Hom(f⇤M•, N•) = Hom(M•, f⇤N
•), Hom(f!M

•, N•) = Hom(M•, f !N•).

Apply the first relation with M• = Q
Y

, N• = Q
X

and the identity morphism.
Observing that f⇤M• = N• we get a morphism Q

Y
! f⇤Q

X
. Now apply

the maps (aY )⇤, (aX)⇤ to source, respectively target. This yields an induced
map between complexes of vector spaces over a point, and in cohomology
this gives f⇤ : H⇤(Y ; Q) ! H⇤(X; Q). The dual argument yields a map
between complexes over a point which in cohomology gives the morphisms
f⇤ : H⇤(X; Q)! H⇤(Y ; Q), and, if X and Y are compact and smooth, at the
same time give the Gysin morphisms.

Using in this construction the mixed Hodge modules M = Q
Hdg

Y
and N =

Q
Hdg

X
, we deduce that these morphisms are indeed morphisms of mixed Hodge

structures. In a moment we need in particular the induced morphism

f ] : (aY )⇤QHdg

Y
! (aX)⇤QHdg

X
(XIV–7)

14.1.3 Spectral Sequences

Since the category of mixed Hodge modules is abelian, the canonical filtration
⌧ preserves complexes of mixed Hodge modules. Therefore, the second spectral
sequence for any functor T sending mixed Hodge modules to mixed Hodge
modules is a spectral sequences of mixed Hodge modules:

Ep,q

2
= HpT (Hq(M•) =) Hp+qT (M•).

Let h : X ! Z be a morphism between complex algebraic varieties and let
M• be any complex of mixed Hodge modules on X. Suppose that h = g�f .
By axiom E) there is a complex of mixed Hodge modules f⇤M• on Y and
a complex of mixed Hodge modules g⇤(f⇤M•) quasi-isomorphic to h⇤M• on
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Z. Apply the above remark to the spectral sequence for the direct image
functor g⇤ for complexes of the form f⇤M•. We arrive at the following result,
which states how the cohomology modules Hqh⇤M•, which are mixed Hodge
modules, behave when h decomposes:

Theorem 14.11. Let f : X ! Y and g : Y ! Z be morphisms between
complex algebraic varieties and let M• be a bounded complex of mixed Hodge
modules on X. Then the spectral sequence

Epq

2
= Hpg⇤�H

qf⇤M
• =) Hp+q(g�f)⇤M•

is a spectral sequence of mixed Hodge modules on Z.

Here we recall that f⇤M• is a complex of objects in the abelian category
of mixed Hodge modules on Y . Hence its cohomology Hqf⇤M• is a mixed
Hodge module on Y and likewise Hpg⇤�Hqf⇤M• and Hp+q(g�f)⇤M• are
mixed Hodge modules on Z.

Let us now take for Z a point, g = aY so that g�f = aX . The mixed Hodge
modules from the preceding theorem are thus all mixed Hodge modules over
a point, i.e. they are mixed Hodge structures. Using the notation (XIV–4) we
thus have:

Corollary 14.12. Let f : X ! Y be a morphism between complex algebraic
varieties and let M• be a bounded complex of mixed Hodge modules on X.
Then the perverse Leray spectral sequence

H
p(Y,Hq[f⇤M•]) =) H

p+q(X, M•)

is a spectral sequence of mixed Hodge structures.

In particular we may take M• = Q
Hdg

X
. The direct image f⇤Q

Hdg

X
is a complex

of mixed Hodge modules on Y , whose rational component is the complex
Rf⇤Q

X
. Then the rational component of its cohomology sheaf Hqf⇤Q

Hdg

X
is

in general not equal to Rqf⇤Q
X

, but rather to ⇡Hqf⇤Q
X

. This is not a single
sheaf but a perverse complex of sheaves of which the hypercohomology groups
can be considered. Using Lemma 14.6 we deduce that these have mixed Hodge
structures. The above corollary 14.12 gives in fact:

Corollary 14.13. The perverse Leray spectral sequence for the constant sheaf
Q

X

H
p(Y, ⇡Hq[f⇤Q

X
]) =) Hp+q(X, Q)

is a spectral sequence of mixed Hodge structures compatible with the (stan-
dard) mixed Hodge structure on Hp+q(X; Q). If f is smooth and proper, it
coincides with the usual Leray spectral sequence up to renumbering the in-
dices. See (XIII–17).

Remark. For f smooth and proper we get back a special case of Theorem 6.5.
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To obtain the non-perverse versions of the Leray spectral sequence, one has
to reconsider the abelian category of mixed Hodge modules and its derived
category. It has a natural t-structure and it is this t-structure which defines the
usual canonical filtration on bounded complexes of mixed Hodge modules. But
the same derived category has another t-structure which has been introduced
in [Sa90, Remark 4.6(2)]. Let us call it the anomalous t-structure. As any
t-structure, it comes with its own canonical filtration on complexes M•, the
anomalous canonical filtration as well as its own, anomalous cohomology
groups eHp(M•). These are mixed Hodge modules, but the rational component
ratX

eHp(M•) is the ordinary cohomology group of the rational component
ratXM•, not the perverse cohomology. The preceding discussion, this time
with the anomalous canonical filtration yields the ordinary Leray spectral
sequence:

Corollary 14.14. The ordinary Leray spectral sequence for the constant sheaf
Q

X

H
p(Y, Hq[f⇤Q

X
]) =) Hp+q(X, Q)

is a spectral sequence of mixed Hodge structures compatible with the (standard)
mixed Hodge structure on Hp+q(X; Q).

Remark. If in the above we use the functor T = (aY )! (global sections with
compact support) instead of T = (aY )⇤, we get the two versions of the Leray
spectral sequence with compact supports.

14.1.4 Intersection Cohomology

Let j : U ,! X be the inclusion of a dense open smooth submanifold of
X and let V be a local system on U . Recall that by Prop. 13.24 we have
IC•

X
(V) = j!⇤(V[dX ]). For V = Q

U
we get a simple object in the category

of perverse sheaves (Lemma 13.26) which by Prop. 13.18 has no sub-object
or quotient object supported on X � U . The functor j!⇤ can be defined as
for complexes of sheaves (formula (XIII–18)), so replacing Q

U
by Q

Hdg

U
, we

obtain
IC•

X
Q

Hdg := j!⇤Q
Hdg

U
[dX ].

Because the functor rat is faithful this is the unique simple object in the
category MHM(X) restricting to Q

U
[dX ] over U .

Lemma 14.15. We have

GrW

n
Hn

Q
Hdg

X
= IC•

X
Q

Hdg, n = dX . (XIV–8)

In particular, the intersection complex underlies a mixed Hodge module of pure
weight.



346 14 Mixed Hodge Modules

Proof. This is clearly true over U and it su�ces to show that the left hand side
has no sub-objects or quotient objects over the complement Z = X�U . Since
axiom C) guarantees that the pure mixed Hodge complex GrW

n
Hn(QHdg

X
) is

semi-simple, every quotient object is also a subobject and so it su�ces to show
it has no quotient objects M 2 MHM(X) of pure weight n supported on Z.
Note that a morphism of complexes K• ! L in an Abelian category where L
is in degree zero gives a morphism H0(K•)! L and if K0 is semi-simple the
converse holds as well. Since the modules figuring in the complex GrW

n
Q

Hdg

X

are all semi-simple this implies

Hom(Hn(GrW

n
Q

Hdg

X
), M) = Hom(H0(GrW

n
Q

Hdg

X
[n]), M)

= Hom(GrW

n
Q

Hdg

X
[n], M)

= Hom(QHdg

X
[n], M).

9
>=

>;
(XIV–9)

The last equation holds because of the functorial properties of weights and
since M has pure weight n. Next, note that we can take “Hom” in the category
MHM or in its derived category (see Remark A.30). In the derived category
we can use adjunction for the pair (i⇤, i⇤) where i : Z ,! X is the inclusion.
Indeed, M = i⇤i⇤M and i⇤QHdg

X
= Q

Hdg

Z
so that by adjunction

Hom(QHdg

X
[n]), i⇤i⇤M) = Hom(QHdg

Z
[n]), i⇤M). (XIV–10)

Look at the rational components of the right hand side. The rational compo-
nent of the first argument up to quasi-isomorphism is Q

Z
[n], a single sheaf in

degree �n. Since i⇤ preserves perversity (see Example 13.18.1), the rational
component of i⇤M is the perverse complex i⇤(ratXM). By definition since
dim Z = n�1, this is a complex concentrated in degrees [�n+1, 0]. It follows
that the left hand side of (XIV–10) vanishes. ut

Note that IHk(X) = Hk((aX)⇤ IC• Q
X

), and so, applying axiom H) to
(aX)⇤ and then applying axioms B) and C) we deduce:

Corollary 14.16. Let X be a compact complex algebraic variety. Then the
intersection cohomology group IHk(X) has a pure Hodge structure of weight
k.

For later use we need:

Corollary 14.17. We have a natural quotient morphism

Q
Hdg

X
⇣ IC•

X
(QHdg)[�dX ], (XIV–11)

which is the identity on U .

Proof. Since perverse complexes are concentrated in degrees [�n, 0] we have
⇡Hk(GrW

n
Q

X
[n]) = 0 for k > 0. Put M• = Q

Hdg

X
[n]. Since the functor ratX

is faithful, we have
Hk(GrW

n
M•) = 0 for k > 0.
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Hence the natural (quotient) morphism M• ! ⌧�0M• in the derived category
is equal to M• ! H0(M•) and we get a morphism of complexes of mixed
Hodge modules

Q
Hdg

X
! H0(QHdg

X
[n])[�n], n = dX .

Composing it with (XIV–8) we get the desired morphism. ut

14.1.5 Refined Fundamental Classes

We have defined (XIV–7) the induced morphism i] : Q
Hdg

X
! i⇤Q

Hdg

Z
. Com-

posing it with the morphism coming from the projection (XIV–11) we get
a morphism � : Q

Hdg

X
! i⇤ IC•Z Q

Hdg[�dZ ]. Since the dual of IC•
Z

Q
Hdg

is the Hodge module IC•
Z

Q
Hdg(dZ) we can compose the morphism � with

its (shifted and twisted) dual IC•
Z

Q
Hdg ! DQ

Hdg

X
(�dZ)[�2dZ ]. So we get

a homomorphism from the constant Hodge module on X to its Verdier
dual up to a shift and twist depending on the codimension. By adjunction
with respect to (aX)⇤, such a homomorphism is nothing but a homomor-
phism between the constant Hodge module Q

Hdg on a point and the complex
(aX)⇤DQ

Hdg

X
(�dZ)[�2dZ ]. The upshot is a refined fundamental class

clHdg(Z) 2 Hom
�
Q

Hdg, (aX)⇤DQ
Hdg

X
(�dZ)[�2dZ ]

�

= Ext�2dZ
MHS

�
Q, (aX)⇤DQ

Hdg

X
(�dZ)

�

where for the last equality we work in the derived category of (polarizable)
mixed Hodge structures. This makes sense also for singular X.

Using the constructions from § 3.5.2, especially formula (III–16), the latter
Ext-group is the absolute Hodge cohomology in degree �2dZ of the complex

R� (Ve
DQ

X
(�dZ)) = (aX)⇤[Ve

DQ
X

(�dZ)]

after marking. If X is smooth and projective, Ve
DQ

X
= Q

X
(dX)[2dX ] and so

in this case, with c = dX � dZ , we find a refined class

clHdg(Z) 2 Ext2c

MHS
(Q, R� (Q

X
(c))).

By Theorem 7.15 the right hand side is exactly the Deligne group H2c

Del
(X, Q(c)).

In fact, as Saito shows, if X is a projective manifold, the refined fundamental
class as defined here coincides with the fundamental class in Deligne cohomol-
ogy as defined in § 7.2.2.

14.2 The Kashiwara-Malgrange Filtration

14.2.1 Motivation

Let X be a complex manifold and let K• be a perverse complex on X. If
X is the total space of a one-parameter degeneration (§ 11.2.2) t : X ! �
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we have seen that (Prop. 13.29) that the associated nearby and vanishing
complexes  t(K•)[�1] and �t(K•)[�1] are perverse on X0. The Riemann-
Hilbert correspondence (Theorem 13.64) tells us that K• corresponds to a
regular holonomic D-module, say M. If X0 is smooth this holds also for the
associated nearby and vanishing complexes, but it fails when X0 is singular.
We shall explain that if we consider M as a D-module on X ⇥� supported
on the graph of t, there is a filtration on M, the V -filtration, such that the De
Rham complex of each graded part gives a suitable eigenspace of the nearby
and vanishing complex.

Notation. Let {V↵M}↵2Q be an increasing filtration (a rational filtration)
on a DX -module M. Put

V<↵M =
[

�<↵

V�M

GrV

↵
M = V↵M/V<↵M.

The filtration V•M is called discrete if for any given interval I, GrV

↵
M 6= 0

for finitely many ↵ 2 I.

To motivate the Kashiwara-Malgrange filtration, which is such a rational
filtration, we first look at the simplest non-trivial example.

Example 14.18. Consider the D-module over the unit disk � coming from a
vector bundle E of rank r equipped with a meromorphic connection r which
is holomorphic on �⇤. The bundle E can be trivialized by a holomorphic
frame {e1, . . . , er} with meromorphic connection matrix M(t) holomorphic
on �⇤. The covariant derivative in the direction of the vector field d/dt acts
on the framed bundle E through the matrix M(t) and this action defines the
D�-module structure on E[t�1]. The connection has regular singularities if
and only if with respect to a suitable frame

M(t) = t�1R + M0(t) (XIV–12)

with R a constant matrix, the residue, and M0(t) a matrix of holomorphic
functions on the punctured disk, admitting a holomorphic extension to �.
This is equivalent to saying that the Fuchs field

@Fcs = t
d

dt

preserves the framed vector bundle O�(E). Let us introduce

A = O�,0

K = O�,0[t�1].

A pair (E,r) consisting of a holomorphic vector bundle E on the unit disk
with a meromorphic connection r then corresponds to the endomorphism
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M(t) of the K-vector space VK = Kr, and r is regular if VK contains a
lattice left stable by tM(t). Conversely, every lattice L left stable by t ·M(t)
yields a rank r vector bundle on � with a regular meromorphic connection
of order 1. Its residue res0(r) at 0 is the endomorphism on C

r = VA/tVA

induced by the Fuchs field. It is represented by R in (XIV–12). The Fuchs
field acts also as R on the complex vector space B := C

r ⇢ V generated by
the standard basis. Since @Fcstk = tk(k + @Fcs), the Fuchs field acts as k + R
on tkB which implies that if ⌃ ⇢ C is the spectrum of @Fcs on B then ⌃ + N

is the spectrum of the action on VA. The monodromy T is related to R by
T = exp(�2⇡iR). Writing Tu, Ts respectively for the unipotent, respectively
semi-simple part of T and R = S + N for the additive Jordan decomposition
in a semi-simple part S and a nilpotent part N , we have

Ts = exp(�2⇡iS) Tu = exp(�2⇡iN) N =
�1
2⇡i

log Tu.

The eigenvalues of R are rational numbers precisely when T is quasi-unipotent.
Let us assume this from now on. Let E�(R) ⇢ VA be the maximal sub-module
on which R � � id acts nilpotently (the generalized “eigenspace” of R with
eigenvalue �). We then introduce

V↵ = V �↵ :=
X

���↵�1

E�(R)A ⇢ VA. (XIV–13)

This defines an exhaustive filtration of VA, since every v 2 VA can be written
uniquely as a powerseries v =

P
v� with v� 2 E�(R). Replacing the inequality

by a strict inequality defines V<↵ so that

GrV

↵
= V↵/V<↵ = E�↵�1(R).

It follows that @Fcs + ↵ + 1 acts on GrV

↵
as R + ↵ + 1 and thus acts simply

as N and hence nilpotently on this space. Summarizing, this V -filtration is a
discrete and rational filtration and has the following properties:

t@tV↵ ⇢ V↵

tkV↵ = V↵�k

t@t + ↵+ 1 acts nilpotently on Gr↵

V
.

9
=

; (XIV–14)

In particular, R acting on V�1/V�2 has eigenvalues in the interval [0, 1). Since
V�2 = tV�1 the lattice V�1 defines a locally free rank r bundle Ẽ extending E
to the disk such that the connection r has a logarithmic pole whose residue
has eigenvalues in the interval [0, 1). It is called the canonical sublattice.
This is exactly the canonical extension of E (see Definition 11.4).

14.2.2 The Rational V -Filtration

We start by defining a V -filtration on DX which originates from the way the
di↵erential operators along the codimension one smooth submanifold Y ⇢ X
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are positioned with respect to DX . This V -filtration (indexed by Z) is an
increasing filtration in the usual sense. It can be introduced as follows. Let
I ⇢ OX be the sheaf of ideals of Y and let VkOX = Ok for k � 0 and V�kOX =
Ik for k > 0. It induces a filtration on the sheaf of C

X
-endomorphisms by

setting
VkEndCOX :={' | 'VjOX ⇢ Vj+kOX , 8j 2 Z}.

This induces the V -filtration on DX . Let us describe this filtration in local
coordinates (t, x1, . . . , xn) such that the hypersurface Y is given by a local
equation t = 0. Write

@t :=
@

@t
.

The Fuchs field t · @t together with the fields tangent to Y preserve the sheaf
of ideals I of Y and together with OX one gets the sheaf V0DX . This implies
that VkDX is locally generated as a (left or right) V0DX -module by products
ti@j

t
with i� j � �k. This V -filtration is clearly exhaustive and respects the

multiplicative structure. Multiplication by t sends Vk onto Vk�1 while @t sends
Vk to Vk+1. Also note that

GrV

0
DX = DY [@t].

Definition 14.19. Let X be a complex manifold, Y ⇢ X a complex subman-
ifold of codimension 1 and M a DX -module. A (rational) V -filtration on M
along Y consists of a discrete increasing and exhaustive rational filtration by
coherent V0DX -modules V↵M such that

1) The filtration is compatible with the V -filtration on DX in the sense
that VkDXV↵M ⇢ V↵+kM. Furthermore, the inclusion IV↵M ⇢ V↵�1M
should be an equality for ↵ < 0;
2) for all ↵ the action of t@t + ↵+ 1 is nilpotent on GrV

↵
M.

If M admits such a filtration, we say that M is specializable along Y .

This notion can be generalized when Y is an analytic subspace of codimension
1. Then Y is locally given by one equation, so it is a Cartier divisor. The sheaf
OX(Y ) of germs of meromorphic functions on X which have at most a pole of
order 1 along Y is therefore locally free of rank 1. Let E be the associated line
bundle and � : X ! E the section defined by the inclusion OY ,! OY (X).
Then Y = ��1E0, where E0 is the zero section of E. It is an easy exercise
to show that for Y smooth, a DX -module M is specializable along Y if and
only if �+M is specializable along E0. In view of this remark it makes sense
to define:

Definition 14.20. Let X be a complex manifold and Y ⇢ X a codimension 1
subvariety. A DX -module M is specializable along Y if �+M is specializable
along E0.
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Examples 14.21. 1) The V -filtration construction in Example 14.18 satisfies
these conditions in view of (XIV–14). So meromorphic connections with
quasi-unipotent monodromy are specializable along the origin.
2) Suppose that M is supported on Y . Then by Theorem 13.47 we have

M =
M

i�0

Mi,

where M0 = Ker{t : M ! M}, and Mi = @i

t
M0. Moreover, ti :

Mi

⇠�!M0 and @i

t
: M0

⇠�!Mi. Then, since ti+1 acts as the zero-morphism
on Mi, setting

V↵M := Ker[t[↵+1] : M!M]

we have
V↵M =

M

0i[↵]

Mi.

From these two descriptions of V↵M, the first condition for the V -filtration
follows. Using the commutation relation @Fcs = t@t = @tt � 1 repeatedly
we see that @Fcs acts as multiplication by �i� 1 on @i

t
M0. In other words,

Mi ⇢ Ker(@Fcs + i+1) from which in fact equality follows. In other words,
@Fcs + [↵] + 1 acts as the zero morphism on Gr[↵]

V
. This shows that also the

second condition for the V -filtration holds.

Remark. If M is specializable along Y , then the filtration V is uniquely de-
fined [Sa88, Lemme 3.1.2]. Hence M is specializable along Y if and only if it is
so locally. It is called the Kashiwara-Malgrange filtration or the rational
V -filtration.

To explain for which D-modules this filtration exists, we first introduce:

Definition 14.22. Let t be a non-constant holomorphic function on a com-
plex manifold X, X0 = t�1(0) a (possibly singular) fibre. A holonomic DX -
module M has quasi-unipotent monodromy along X0 if the monodromy
action on  t(DR(M)) is quasi-unipotent.

Then we have:

Theorem 14.23 ([Malg79]). Every regular holonomic DX-module with quasi-
unipotent monodromy is specializable along X0.

In the setting where Y = X0 = t�10 the reduction to the case of a smooth
fibre X0 can be made globally since OY (X) = OY : one replaces t by the
composition of

i = it : X ! X ⇥ C, x 7! (x, t(x)) (XIV–15)

followed by the projection p : X ⇥ C ! C. If M is regular holonomic, by
Prop. 13.63 also i+M is regular holonomic. Since DR i+ = i⇤DR we see
that  p(DR(i+M)) =  p(i⇤(DRM)) = i⇤ t(DR(M)), and hence we de-
duce that if M has quasi-unipotent monodromy along X0, then i+M has
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quasi-unipotent monodromy along X ⇥ {0}. In view of Thm. 14.23 it is thus
specializable along X ⇥ {0} and admits its own rational V -filtration. As an-
nounced in 14.2.1 it can be linked to the monodromy action as made explicit
in [Kash83] and [Malg83]. Saito summarizes it as follows.

Theorem 14.24 ([Sa88, 3.4.12]). Let X be a complex manifold, let t : X !
C be a non-constant holomorphic function on X, and let M be a regular
holonomic DX-module with quasi-unipotent monodromy along X0 = t�1(0)
(Def. 14.22).

Introduce be the subcomplex  t,e(↵)(DRX(M)) of  t(DRX(M)) corre-
sponding to the eigenvalue e(↵) = exp(2⇡i↵) of the semi-simple part of the lo-
cal monodromy operator, and similarly for �t(M). Then, setting fM = (it)+M
(see (XIV–15)), there are canonical isomorphisms

DRX⇥{0}(GrV

↵
fM) '

⇢
 t,e(↵)(DRX(M))[�1] if � 1  ↵ < 0
�t,e(↵)(DRX(M))[�1] if � 1 < ↵  0

Moreover, under these isomorphisms

a) t@t + ↵+ 1 corresponds to
�1
2⇡i

log Tu = N ,
b) @t corresponds to can, and
c) multiplication by t corresponds to var.

Remark 14.25. Let M be a DX -module specializable along X0. Then GrV

↵
fM

is a coherent DX0
-module and it is (regular) holonomic if M is (regular)

holonomic). Let K• be the perverse complex corresponding to M under the
Riemann-Hilbert correspondence so that  tK•[�1] is perverse on X0. The
above theorem states that

a) the DX⇥{0}-module
L
�1↵<0

GrV

↵
fM, which is in fact supported on

X0⇥{0} plays the role of DR�1

X0
( tK•[�1]) with GrV

↵
fM corresponding

to the eigenspace of the “logarithmic connection” t@t on fM for the
eigenvalue �↵ ;
b) theDX⇥{0}-module

L
�1<↵0

GrV

↵
fM plays the role of DR�1

X0
(�tK•[�1]).

The component with ↵ = 0 corresponds to the eigenspace of the unipo-
tent part of the local monodromy on �tK•[�1] for the eigenvalue 1 .

Remark. In [Sa88] D-modules act from the right. So the left action of t@t

would have to be replaced with the left action of @tt = t@t + 1. Working out
what this means in Example 14.21 2) where t@t + ↵ + 1 acts nilpotently on
Gr↵

V
we find that under this right action it is t@t � ↵ which acts nilpotently.

This checks with the proof of [Sa88, Lemme 3.1.3]. It explains our convention
of indexing the V -filtration as used in Def. 14.19. With these changes we
can indeed use Saito’s definitions for the nearby and vanishing D-modules to
which Theorem 14.24 is a prelude. One further word of warning: Saito uses
left D-modules and a decreasing V -filtration in the introduction to loc.cit.
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Suppose now that (M, F ) is a filtered DX -module such that M is special-
izable along X0. By definition, it admits the rational V -filtration so that in
particular N↵ := t@t +↵+ 1 acts nilpotently on the graded parts GrV

↵
M. Let

W = W (N↵) be the associated weight filtration centred at 0 (Def. 11.9). The
following compatibility between F and the rational V -filtration is needed:

Definition 14.26. We say that (M, F ) is specializable along X0 if

1) M is specializable along X0;
2) t(FpV↵M) ⇢ FpV↵�1M with equality if ↵ < 0;
3) @t(Fp GrV

↵
) ⇢ Fp+1 GrV

↵+1
with equality if ↵ > �1.

4) F induces good filtrations on the DX0
-modules GrW

i
GrV

↵
, i.e. (by Lemma

13.43) the DX0
-modules GrF GrW

i
GrV

↵
are coherent.

14.3 Polarizable Hodge Modules

14.3.1 Hodge Modules

We start with the definitions leading to the notion of a Hodge module on
a complex manifold. The more general case of a complex analytic space can
be handled by taking charts and a patching procedure as explained in [Sa90,
§2.1]. The main di�culty is the definition of D-modules on a singular variety;
local charts embedding X in a smooth variety U suggest to define a D-module
on X as a DU -module with support X. One needs to check independence of
charts.

Definition 14.27. Let X be a complex manifold. A rational structure on
a holonomic DX -module M consists of a perverse complex M•

Q
2 Perv(X; Q)

together with a quasi-isomorphism in Perv(X; C)

↵ : M•

Q
⌦ C

⇠�! DRX(M) (comparison isomorphism).

The triple (M,↵,M•

Q
) is called a rational DX-module.

Let us next switch to filtered regular holonomic rational DX -modules. For-
getting the comparison isomorphism we denote the resulting rational DX -
modules as triples (M, F,M•

Q
); the following standard operations can be de-

fined:

1) Tate twists:

(M, F,M•

Q
)(n) :=(M, F [n],M•

Q
(n)). (XIV–16)

A word of explanation. Since F is an increasing filtration we have F [n]p =
Fp�n. The notation M•

Q
(n) means that the same complex MQ is used, but

the comparison morphism ↵ gets replaced by (2⇡i)n↵.
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2) Proper direct images: let f : X ! Y be a proper map between complex
manifolds. Then, within the associated derived category we wish to define

f⇤(M, F,M•

Q
) :=(f+(M, F ), Rf⇤(M•

Q
)).

If we forget the filtration, using the Riemann-Hilbert correspondence (The-
orem 13.64) we see that this makes sense. There is however a problem with
F -filtration, since we want it to induce a filtration on the direct images.
For this to be true one needs that the derivatives d preserve the filtration
of f+(M, F ) strictly. This is automatic for a closed immersion i : Z ,! X
where we have

i⇤(M, F,M•

Q
) :=(i+(M, F ), i⇤(M•

Q
))

In general, if the strictness condition is verified we set

f⇤(M, F,M•

Q
) :=(Rf+(M, F ), ⇡Rf⇤(M•

Q
)), (XIV–17)

where ⇡Rf⇤ stands for the perverse direct image, i.e. the derived functor for
f⇤ with respect to the t-structure given by the middle perversity (A–20).

3) Duality:
DX(M, F,M•

Q
) :=(DX(M, F ), Ve

DXM•

Q
).

This makes sense, again because of the Riemann-Hilbert correspondence
13.64 i).

4) Nearby and vanishing cycles: let t be a non-constant holomorphic function
on X. Suppose that (M, F ) is specializable along {t = 0} (Def. 14.26). Put
as before fM = (it)+M (see (XIV–15)). We then have

Gr↵

V
( fM, F [1])

@t��! Gr↵+1

V
( fM, F )

Gr↵

V
( fM, F ) t�! Gr↵�1

V
( fM, F ).

By Remark 14.25 taking on the left hand side the sum over ↵ 2 [�1, 0) we
obtain a filtered DX0

-module which corresponds to  t(DRX(M, F )). So,
following Saito [Sa88, (5.1.3.3)] we put

 t(M, F,M•

Q
) :=

L
�1↵<0

�
Gr↵

V
( fM, F [1]), t,e(↵)(M•

Q
)[�1]

�

 t,1(M, F,M•

Q
) :=

⇣
Gr�1

V
( fM, F ), t,1(M•

Q
)[�1]

⌘
.

)
(XIV–18)

Ideally we would like to put �t(M, F ) =
L

0↵<1
Gr↵

V
( fM, F ) since we

then would have that @t :  t(M, F ) ! �t(M, F ) and t : �t(M, F ) !
 t(M, F [�1]) =  t(M, F )(�1). However, under the Riemann-Hilbert cor-
respondence this module does not correspond to �t(DRX(M, F )). By
Theorem 14.24 this is indeed

L
�1<↵0

Gr↵

V
( fM, F ) which intersects the

previous D-module only in Gr0
V

( fM, F ) which is the unipotent part of
�t(DRX(M, F )). For this reason we put
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�t,1

�
(M, F ),M•

Q

�
:=

�
Gr0

V
( fM, F [1]),�t,1(M•

Q
)[�1]

�
(XIV–19)

So now by Theorem 14.24 we have morphisms

can :  t,1(M, F,M•

Q
)! �t,1(M, F,M•

Q
) (XIV–20)

var : �t,1(M, F,M•

Q
)!  t,1(M, F,M•

Q
)(�1). (XIV–21)

Before we can give a definition of a Hodge module we need two more
concepts. One is the monodromy weight filtration.

Definition 14.28. A filtration on a rational DX -module (M,↵,M•

Q
) con-

sists of a pair of filtrations on M and on the complex M•

Q
that correspond

under ↵.

The monodromy weight filtration on the complex  t(M•

Q
) can be defined

as in the special case of the constant sheaf treated in § 11.2.6 and § 11.2.5; as
in this special case there is a complex counterpart of this filtration on  tM
compatible with the rational filtration, and thus these define a monodromy
weight filtration W on  t(M, F,M•

Q
) and similarly on �t,1(M, F,M•

Q
). In

fact for all i � 0 we have isomorphisms

N i : GrW

n�1+i
 t(M, F,M•

Q
) ⇠�! GrW

n�1�i
 t(M, F,M•

Q
)(�i)

N i : GrW

n+i
�t,1(M, F,M•

Q
) ⇠�! GrW

n�i
�t,1(M, F,M•

Q
)(�i)

�
(XIV–22)

See [Sa88, § 5] for details.
We also need the concept of strict support.

Definition 14.29. A filtered D-module equipped with a rational structure
has strict support in a subvariety Z ⇢ X, if first of all it has support
on Z, and, in addition, no sub-object or quotient-object has strictly smaller
support. A direct sum of such modules is said to satisfy the strict support
condition.

Now we can give a recursive definition of the concept of a Hodge module:

Definition 14.30. Let X be a smooth complex algebraic variety. Consider
the category of those rational filtered regular holonomic DX -modules which
in addition satisfy the strict support condition. The category MH(X,n) of
Hodge modules on X of weight n is the largest full subcategory of this
category such that

1) If M has support {x}, then M = ix⇤(HC, F, HQ), where ix : x ,! X is
the inclusion, and (HC, F, HQ) is a rational Hodge structure of weight n.
2) For all Zariski open U ⇢ X, t : U ! C a non-constant holomorphic
function, and M having support not contained in t�1(0), if we let W be the
weight filtration centred at (n� 1), respectively n (see (XIV–22)) then for
all k 2 Z the graded modules GrW

k
 t(M, F,M•

Q
) and GrW

k
�t,1(M, F,M•

Q
)

respectively, are Hodge modules of weight k with support on t�1(0).
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For a Hodge module (M, F,M•

Q
) we call F the underlying Hodge filtration

and M•

Q
its rational component. This association defines a functor

ratX : MH(X, n)! Perv(X; Q) (XIV–23)

which is compatible with the direct image functors (when defined) and with
Verdier duality.

The category MHZ(X,n) is the full subcategory of MH(X, n) of those
Hodge modules having strict support Z. The category of Hodge modules is
artinian in a very strong sense: a Hodge module enjoys the strict support
condition [Sa88, § 5.1.6]:

MH(X, n) =
M

Z⇢X

MHZ(X,n). (XIV–24)

We have moreover:

Proposition 14.31 ([Sa88, Prop. 5.1.14]). The categories MH(X,n) and
MHZ(X,n) are abelian and every morphism in these categories is strict with
respect to the F -filtration. We have

a) Both categories are stable under direct summands.
b) Tate twisting k times maps MH(X, n) to MH(X, n� 2k).
c) Duality sends MHZ(X, n) to MHZ(X,�n).

A basic example of a Hodge module on a complex algebraic manifold X
is provided by a polarizable variation of (rational) Hodge structures on X as
introduced in § 10.2.

Theorem 14.32 ([Sa88, Th. 5.4.3]). Let X be a complex algebraic manifold
and let V = (V,F•) a polarizable variation of Hodge structures of weight n
on X. Let r be the canonical integrable connection on V := V⌦Q OX . Then

V Hdg :=((V,r),F�•, V[dX ])

is a Hodge module of weight n + dX with strict support X.

Proof (Indication). The proof is long and complicated. By way of explana-
tion, the Hodge filtration, modified to make it an increasing filtration, is an
F -filtration. Gri�ths’s transversality (X–4) translates into F being good (Ex-
ample 13.42). The De Rham complex of the D-module V is quasi-isomorphic
to V⌦C[dX ]. This last assertion is not at all trivial and uses the polarization.
ut

By the preceding Theorem 14.32, a polarized variation of Hodge structure
V on a complex algebraic manifold X determines a unique Hodge module
V Hdg with strict support X, the Hodge module defined by the variation
of Hodge structure V .

More generally, we can construct a Hodge module from a polarized varia-
tion of Hodge structure over a dense open subset of X:
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Theorem 14.33 ([Sa90, 3.20, 3.21]). Let U be the complement of a divisor
D ⇢ X having normal crossings. Let V be a local system of Q-vector spaces
over U such that the local monodromy operators of V around D are quasi-
unipotent. If V underlies a polarized variation of Hodge structures of weight
n, say V , then there is a unique Hodge module V Hdg

X
of weight n + dX having

strict support X and which restricts over U to V Hdg.

Proof (Sketch). By the Riemann-Hilbert correspondence, there is a regular
holonomic DX -module M whose De Rham complex equals the perverse ex-
tension of V. Indeed, by Prop. 11.3 we have an extension of V to a vector
bundle V on X with a meromorphic connection having poles of order at most
1 along D and with residues along each branch of D in the interval [0, 1).
Then the module ⇡V from Example 13.65 is the D-module M we are after.
If now V underlies a polarizable variation of Hodge structures of weight n,
there is an F -filtration on j⇤V and hence on M. By construction M is reg-
ular holonomic. What remains to be shown is that the corresponding triple
(M, F, ⇡

V) fulfills all the requirements for a Hodge module. ut

Note that IC•
X

V = j!⇤(V[d]) is the unique perverse extension of V[d] with
strict support X and since ratX is faithful, it follows that V Hdg

X
= j!⇤V Hdg.

This inspires the following definition.

Definition 14.34. Let Z be an irreducible complex algebraic subvariety of
an algebraic variety X and let V be a polarizable variation of weight n Hodge
structures over U ⇢ Z, a dense open set in the regular part of Z. Consider
the Hodge module V Hdg of weight n � dZ defined by V . With i : Z ,! X,
j : U ,! Z the inclusions, the Hodge module extension is defined by

V Hdg

Z
:= i⇤(j!⇤V Hdg),

where the intermediate direct image functor j!⇤ is defined as in the case of
constructible complexes (XIII–18).

Note that the rational component of this Hodge module is precisely
the perverse extension of the local system V underlying V in the sense of
Def. 13.25, i.e. we have ratXV Hdg

Z
= ⇡

VZ .

14.3.2 Polarizations

In this subsection we characterize the Hodge modules which are Hodge module
extensions of polarisable variations of Hodge structure.

Let K•, L• be two bounded complexes of sheaves of Q-vector spaces
on a complex manifold X with constructible cohomology, i.e. belonging to
Db

c
(X; Q). Their tensor product in the category Db

c
(X; Q) is defined replacing

the complexes by any projective resolution (see Example A.29) and then tak-
ing the usual tensor product. As usual, the result will be denoted by K•⌦L L•.
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The dualizing complex as given in (XIII–3) for rational perverse sheaves
gets an additional Tate twist:

Ve
DX := Q

X
(dX)[2dX ]. (XIV–25)

The reason is that by Prop. 13.5 H�q

c
(X, Ve

DX) = Hq(X; Q) and hence, by
(XIV–25):

H2dX�q

c
(X; Q)(dX) ' Hq(X; Q),

the Hodge theoretic form of Poincaré-duality (Def. 1.17).
Consider a morphism

K• ⌦L L• S�! Ve
D
•

X
(r), r 2 Z.

By adjunction it induces

K• S
0
��! Hom(L•, Ve

D
•

X
(r)) = Ve

DXL•(r),

and we say that S is non-singular if S0 is a quasi-isomorphism. In the special
case where K• = L• = M•

Q
is the rational component of a Hodge module of

weight n and where r = �n we speak of a non-singular paring on M•

Q
. In

this setting, the adjunction map S0 becomes a quasi-isomorphism

M•

Q
! Ve

DXM•

Q
(�n). (XIV–26)

To have a polarization on the entire Hodge module this quasi-isomorphism
should first of all extend to the Hodge module level. Some extra ingredients
are needed to make the theory of polarizable Hodge modules functorial. Saito’s
definition is very involved and we give a simplified treatment:

Definition 14.35. Suppose that M = (M, F,M•

Q
) is a Hodge module of

weight n with strict support in Z ⇢ X which is of the form M = V Hdg

Z
, the

Hodge module extension of a polarized variation of Hodge structures V of
weight n � dZ on a Zariski-open subset U of Z. A polarization on M is a
non-singular pairing on the rational component M•

Q
such that

1) the quasi-isomorphism (XIV–26) extends to an isomorphism

S0 : (M, F,M•

Q
)! DX(M, F,M•

Q
)(�n)

of Hodge modules of weight n with strict support in Z;
2) S0 induces a polarization of the variation V (defined on U), in the sense
of Def. 10.8.

A Hodge module admitting a polarization is called polarizable.

Remark 14.36. 1. A posteriori Saito’s definition definition turns out to be
equivalent with the preceding definition. See [Sa88] and [Sa90].
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2. Any polarizable Hodge module M with strict support X by assumption
is of the form M = V Hdg

X
as in the preceding definition. In particular, the

rational component of M is the perverse extension (Def. 13.25) ⇡
V of the

local system V underlying V .

Since, as we saw (Theorem 14.31), the category of Hodge modules is
abelian, the strict support condition for Hodge modules then entails its semi-
simplicity [Sa88, Cor. 5.2.13]. Summarizing, we have:

Theorem 14.37. The category of weight n polarizable Hodge modules

MH
pol(X, n)

on X is semi-simple with simple objects the polarizable Hodge modules of the
form V Hdg

Z
, where V is a polarizable weight n�dZ variation of Hodge structure

on a smooth dense Zariski open subset of an irreducible algebraic subvariety
Z ⇢ X, and for which moreover the monodromy representation is irreducible.

From this theorem and Remark 14.36.2 we deduce:

Corollary 14.38. The Grothendieck group K0MH
pol(X, n) is generated by

classes [V Hdg

Z
], where V is a polarizable variation of Hodge structures of

weight n � d on a smooth Zariski open subset of a d-dimensional irreducible
smooth subvarieties Z of X. The functor ratX (XIV–23) associates to a
polarizable variation of Hodge structure of weight n � d supported on a d-
dimensional subvariety of X the perverse extension to X of its underly-
ing local system. This functor is faithful and induces a ring homomorphism
K0(MH

pol(X,n))! K0(Perv(X; Q)).

14.3.3 Lefschetz Operators and the Decomposition Theorem

We introduce the Lefschetz operator on the level of filteredDX -modules, where
X is a projective manifold X. We first have to find a suitable incarnation of
the first Chern class of a line bundle M in the filtered complex (E•

X
(C), F )

where F is the “Hodge filtration” from § 2.3.1, i.e. FpEk

X
(C) =

L
r��p

Er,k�r

X
.

The crucial remark is that given a hermitian metric h on M , which locally on
a trivializing open cover {U↵} of X is given by functions h↵, the first Chern
class is represented by the (global) Chern form

�h =
i

2⇡
@@̄h↵ 2 F�1E2

X
(C).

Wedging with this form thus induces a morphism

LM :=^(�h) : (E•
X

(C), F )! (E•
X

(C), F )(1)[2]. (XIV–27)

Another choice h0 of a metric leads to a form which di↵ers from �h by a form
of the type @@̄f where f is a global C1-function. The form �(h, h0) = �@f 2
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F�1E1

X
(C) thus has the property that d�(h, h0) = �h � �h0 , i.e. it gives a

homotopy between wedging with �h and wedging with �0
h

so that LM is well
defined up to homotopy. Moreover, since �h represents an integral class, this
is compatible with the usual Lefschetz operator on rational cohomology if we
take for M an ample line bundle.

To rephrase this, introduce the filtered left DX -module

(L, F ) :=(DX , F ord)⌦OX (E•
X

(C), F ).

Then, by flatness of the sheaves Ep,q

X
over OX , any filtered DX -module (M, F )

is quasi-isomorphic to

(M, F )0 :=(M, F )⌦OX (L, F )

and for an ample line bundle the operator (XIV–27) induces the the Lefschetz
operator:

L := id⌦LM : (M, F )0 ! (M, F )0(1)[2]. (XIV–28)

which is well defined in the derived category. Moreover, for any rational filtered
DX -module ((M, F ),↵,M•

Q
) this action of L is compatible under ↵ with the

usual action of L on M•

Q
.

This operator plays an important role in the following theorem, where
it is used in the relative situation of a projective morphism f : X ! Y ,
and on the level of cohomology sheaves. Before formulating the theorem we
also need the concept of an induced pairing. Note that f! = Rf⇤ since f
is proper, and the natural adjunction morphism (see (XIII–10)) now reads
Rf⇤Ve

DQ
X
! Ve

DQ
Y

. Any morphism S : K• ⌦L L• ! Ve
DQ

X
(r) induces

Rf⇤S : Rf⇤K
• ⌦L Rf⇤L

• ! Ve
DQ

Y
(r).

Consider the special case where K• = L• = M•

Q
, the rational component

of a Hodge module M of weight n, and where in addition r = �n; take the
perverse cohomology of Rf⇤M•

Q
in degree (�k) for the first argument in the

tensor product and in degree k for the second argument. Finally, extend the
resulting morphism to the Hodge modules of which these are the rational
components. This yields the morphism

R�kf⇤S : R�kf⇤M ⌦
L

Rkf⇤M ! Ve
DQ

Y
(�n). (XIV–29)

We can now formulate Saito’s result concerning proper direct images [Sa88,
Thm. 5.3.1]:

Theorem 14.39. Let f : X ! Y be a projective morphism between smooth
complex varieties and let L be the Lefschetz operator with respect to a relatively
ample line bundle. Let M = (M, F,M•

Q
) be a Hodge module on X of weight

n with strict support on an irreducible subvariety of X and polarized by S.
Then
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i) The filtration on the complex f⇤(M, F ) is strict so that Rkf⇤(M, F ) is
a filtered DY -module. In fact, for all k, the filtered rational DY -module
Rkf⇤(M, F,M•

Q
) (see (XIV–17)) is a Hodge module on Y of weight n+k.

ii) On these modules the Lefschetz operators L are defined by the procedure
(XIV–28), and the hard Lefschetz theorem holds:

Lk : R�kf⇤M
⇠�! Rkf⇤M(k) for k � 0.

iii) Consider the morphism (XIV–29). Define

(R�kf⇤M)prim := Ker
⇥
Lk+1 : R�kf⇤M ! Rk+2f⇤M

⇤
.

Then the form (x, y) 7! (�1)
k(k�1)

2 R�kf⇤S(x, Lky) is a polarization on
the Hodge module (R�kf⇤M)prim.

Corollary 14.40. Let X be a compact Kähler manifold and V a local system
of Q-vector spaces on a Zariski open subset of X. If V underlies a polarizable
variation of Hodge structures of weight n, the intersection cohomology group
(Definition 13.12) IHk(X, V) carries a polarizable Hodge structure of weight
k + n.

Proof. Let H be the polarizable Hodge module of weight n which by Prop. 14.33
corresponds to a polarizable variation on V. Since X is compact aX : X !
point is proper and hence (RkaX)⇤(H) is a Hodge module of weight n + k.
The rational component of this Hodge module is just IHk(X, V). ut

Corollary 14.41. Let K• be a perverse complex of Q-vector spaces on X
which is the rational component of a polarizable Hodge module. Let f : X ! Y
be a projective morphism. Then the (perverse) Leray spectral sequence for K•

and f degenerates at the E2-term; in fact the analogue of the decomposition
theorem (I–16) holds:

Rf⇤K
• '

M

i

⇡Hif⇤K
•[�i].

Proof. That the Leray spectral sequence degenerates follows from Theo-
rem 14.39 in the same way as Prop. 1.38. Like in Remark 1.39 2), one can in
fact show that the decomposition holds as stated. ut

One can apply this result to perverse complexes of the form IC•
X

V, with
V = Q

X
, or more generally any local system V which is a direct factor of

Rkg⇤Q
Y

, g : Y ! X a smooth projective morphism. Such local systems are
called of geometric origin. Recalling the notation (XIII–13) we have

Corollary 14.42 (Decomposition Theorem). Let f : X ! Y be a projec-
tive morphism and let V be a local system on a smooth dense open subset of
X which is of geometric origin. Then
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Rf⇤ IC•X V '
M

i

⇡Rif⇤ IC•X V[�i] in Db

cs
(Y ; Q)

⇡Rif⇤ IC•X V =
M

Z

IC•
Z

V
i

Z
in Perv(Y ; Q).

Here Z runs over the irreducible subvarieties of Y and each V
i

Z
is locally

constant over a dense open smooth subset of Z.

In fact the last assertion follows since the category of Hodge modules satisfies
the strict support condition of Def. 14.29.

Remark. For a proof using only (classical) mixed Hodge theory, see [dC-M].

If we apply the decomposition theorem to a resolution of singularities, we
deduce:

Corollary 14.43. Let f : Y ! X be a projective resolution of singulari-
ties of a projective variety X. Then the complex IC•

X
Q

X
is a direct fac-

tor of Rf⇤Q
Y

[dX ]. In particular the (rational) intersection cohomology group
IHk(X) ⌦ Q is a direct factor of the (rational) cohomology group Hk(Y ; Q)
as weight k Hodge structures.

14.4 Mixed Hodge Modules

14.4.1 Variations of Mixed Hodge Structure

Mixed Hodge structures can be viewed as successive extensions of pure Hodge
structures of di↵erent weights, encoded in the weight filtration and its graded
subquotients. Given a rational vector space V with filtrations W• on V and
F • on VC, we have a mixed Hodge structure if and only if F induces a Hodge
structure of weight k on each GrW

k
V .

One of the subtleties of mixed Hodge modules is that arbitrary extensions
of mixed Hodge modules do not result in mixed Hodge modules: some ad-
ditional conditions on the extension data are required. In this subsection we
describe these conditions in the case of mixed Hodge modules M on a smooth
variety X such that ratXM is a local system. These are called smooth mixed
Hodge modules.

Definition 14.44. Let S be a complex manifold. A variation of mixed
Hodge structure on S consists of the following data:

1) a local system VZ of finitely generated abelian groups on S;
2) a finite decreasing filtration {Fp} of the holomorphic vector bundle V :=
VZ ⌦Z OS by holomorphic subbundles (the Hodge filtration).
3) a finite increasing filtration {Wm} of the local system VQ := VZ ⌦Z Q by
local subsystems (the weight filtration).

These data should satisfy the following conditions:
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1) for each s 2 S the filtrations {Fp(s)} and {Wm} of V(s) ' VZ,s ⌦Z C

define a mixed Q-Hodge structure on the Q-vectorspace VQ,s ;
2) the connection r : V ! V ⌦OS ⌦

1

X
whose sheaf of horizontal sections is

VC satisfies the Gri�ths’ transversality condition

r(Fp) ⇢ Fp�1 ⌦⌦1

S
.

The notion of a morphism of variations of mixed Hodge structure
is defined in the obvious way.

Definition 14.45. A variation of mixed Hodge structure will be called graded-
polarizable if the induced variations of pure Hodge structure GrW

k
V are all

polarizable.

Consider a graded polarizable variation of mixed Hodge structure (V, W,F)
over the punctured unit disc �⇤ with parameter t. As W is a filtration of
VQ by local subsystems, the monodromy operator preserves W ; moreover the
monodromy theorem 11.8 guarantees that the monodromy of each GrW

VQ is
quasi-unipotent. Hence the monodromy of V is quasi-unipotent.

From now on we assume that the monodromy T of V is in fact unipo-
tent. We let V = ( tVQ)0 and N = log T : V ! V . We let W denote the
induced filtration on V . Consider the weight filtration kM of the nilpotent
endomorphism Grk(N) on GrW

k
V centered at k (see Def. 11.9).

Definition 14.46. A weight filtration of N relative to W is a filtration
M of V such that

i) NMi ⇢Mi�2

ii) M induces kM on GrW

k
V .

Proposition 14.47 ([Del80, (1.6.13)]). There is at most one weight filtra-
tion M of N on V relative to W .

Definition 14.48. If such M exists, it is called the weight filtration of N
relative to W and we denote it by M = M(N ;W ).

We let Ṽ denote the canonical extension of V to a holomorphic vector
bundle on � such that the connection extends to one with a logarithmic pole
at 0 with nilpotent residue. The filtration W extends to Ṽ and GrW

k
Ṽ is the

canonical extension for GrW

k
V. Let kF denote the Hodge filtration on GrW

k
V.

It extends to a filtration kF̃ of GrW

k
Ṽ.

Definition 14.49. 1. A variation of mixed Hodge structure (V, W,F) over
the punctured unit disc �⇤ is called admissible if
a) it is graded-polarizable;
b) the monodromy T is unipotent and the weight filtration M(N,W ) of

N = log T relative to W exists;
c) the filtration F extends to a filtration F̃ of Ṽ which induces kF̃ on

GrW

k
Ṽ for each k.
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2. Let X be a compact complex analytic space and U ⇢ X a smooth Zariski-
open subset. A graded polarizable variation of mixed Hodge structure
(V, W,F) on U is called admissible (with respect to the embedding U ⇢
X) if for every holomorphic map i : � ! X which maps �⇤ to U and
such that i⇤V has unipotent monodromy, the variation i⇤(V, W,F) on �⇤
is admissible.

Lemma 14.50. If (V, W,F) is admissible over �⇤, then for each k the triple
(Ṽ(0), M, F̃(0)) is a mixed Hodge structure, and N is an endomorphism of
type (�1,�1) of it.

Proof. See the appendix of [St-Z] or [Kash86, Prop. 5.2.1].

Suppose that f : X ! S is a morphism of complex algebraic varieties
and k 2 N. Then there exists a Zariski-open dense subset U ⇢ S such that
the restriction to U of Rkf⇤ZX

is a local system and underlies a variation of
mixed Hodge structure. If f is quasi-projective, this variation of mixed Hodge
structure is graded-polarizable. We refer to this situation as a geometric
variation of mixed Hodge structure.

Theorem 14.51 ([St-Z, ElZ86, Kash86]). Geometric variations of mixed
Hodge structure are admissible.

The fundamental result about admissible variations of Hodge structures is

Theorem 14.52 ([St-Z, ElZ03]). Let V be an admissible variation of mixed
Hodge structure on U . Then for each k the vector space H

k(U, V) carries a
canonical mixed Hodge structure.

Idea of the proof. To explain where the admissibility comes in, consider first the
Hodge filtration. Assume that D = S � U is a divisor with normal crossings,
say D =

P
Dk. Let Tk be the local monodromy operator around Dk and let

Nk = log(Tk). With Ṽ, respectively F̃p the canonical extension of V = V⌦OU ,
respectively Fp,we put

F p(⌦•

X
(log D)⌦ Ṽ) =

⇥
F̃p ! ⌦1

X
(log D)⌦ F̃p�1 ! · · ·

⇤
.

The naive weight filtration, obtained by taking the intersection complexes
IC•

X
(Wk) does not produce a mixed Hodge complex of sheaves on X. One

needs instead the relative weight filtrations M(Ni) with respect to the Wk in
the sense of Def. 14.46. The precise descriptions and the proof that this gives
a mixed Hodge complex of sheaves can be found in [St-Z] for the curve case,
and in [ElZ03] for the general situation. ut

Definition 14.53. Let V = (VQ, W,F) be an admissible variation of mixed
Hodge structure on a smooth complex variety U . It gives rise to the holonomic
DU -module V = VQ ⌦Q OU which is filtered by
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WkV := WkVQ ⌦Q OU

FpV := F�pV.

These data, together with the comparison isomorphism

(VQ[dU ], W )⌦ C
⇠�! DR(V, W )

constitutes the smooth mixed Hodge module V Hdg, or V
Hdg

Q
[dU ] on U .

Examples 14.54. Let X be a smooth complex algebraic variety.

a) Polarizable variations of Hodge structure on X are smooth mixed
Hodge modules.
b) The constant mixed Hodge module on X is the pure weight dX

Hodge module defined by the weight 0 constant variation of Hodge
structure on Q

X
. A concrete incarnation, used by Saito is as follows:

Q
Hdg

X
[dX ] :=(!X , F, Q

X
[dX ], W ), GrF

�k
= 0 = GrW

k
if k 6= dX .

(XIV–30)
So the D-module component is the canonical bundle !X viewed as a
right DX -module and its perverse component is the constant sheaf Q

X

placed in degree �dX (recall (XIII–24) that the De Rham complex of
the associated left DX -module OX is just the usual De Rham complex
shifted dX -places to the left, a complex quasi-isomorphic to C

X
[dX ]).

14.4.2 Defining Mixed Hodge Modules

Just like Hodge structures, Hodge modules are not always stable under direct
sums (e.g. if the weights are di↵erent). Mixed Hodge structures can be viewed
as iterated extensions of pure Hodge structures of di↵erent weights, encoded
in the weight filtration and their pure gradeds. The same holds for mixed
Hodge modules on a complex algebraic variety X, except that the definition
is much more involved. In this section we give an inductive definition for mixed
Hodge modules on a smooth algebraic variety which is di↵erent from Saito’s
complicated definition, but is in fact equivalent to it.

We are going to extend Definition 14.53 to arbitrary mixed Hodge modules
on a smooth algebraic X. The definition is local in the Zariski topology and
the singular case can be treated by locally embedding X in a smooth variety,
just as for Hodge modules.

First introduce the category of bi-filtered rational D-modules consist-
ing of a filtered rational D-module (M, F,M•

Q
) together with a filtration W

on (M,M•

Q
), the weight filtration. This is a pair of filtrations compatible

with the comparison isomorphism. Note that GrW

i
(M, F,M•

Q
, W ) is a fil-

tered rational D-module. We further demand that these be polarizable weight
i Hodge modules on X. The full subcategory generated by such bi-filtered
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rational D-modules will be denoted MHW(X). This subcategory is not yet
the category we are after, since it does not behave well with respect to the
vanishing and nearby cycle functors. To remedy this we proceed as follows.
Recalling the convention (XIV–18), (XIV–19) we put

 t,1(M, F,M•

Q
, W ) := ( t,1(M, F,M•

Q
), W ),

�t,1(M, F,M•

Q
, W ) := (�t,1(M, F,M•

Q
), W ).

The formulas (XIV–20) and (XIV–21) define the two morphisms can and var
making (M |U, t,1M, can, var) an example of a gluing datum:

Definition 14.55. Let t : X ! C be a holomorphic function, Y = t�1(0),
U = X�Y . A gluing datum in MHW for (X, t) is a quadruple (M 0, M 00, u, v)
where M 0 2 MHW(U), M 00 2 MHW(Y ), and

�t,1M 0
u�! M 00

M 00
v�! �t,1M 0(1),

are homomorphisms in the category MHW(Y ) such that v�u = N ⌦ (2⇡i)�1.

Gluing data can be used to define mixed Hodge modules by induction on the
dimension of the support as follows.

Definition 14.56. An object M 2 MHW(X) is a mixed Hodge module if
there is a Zariski-open cover {Xi} of X and holomorphic functions ti : Xi ! C

such that, putting Yi = t�1

i
(0), Ui = Xi � Yi, the restriction M |Yi is a mixed

Hodge module on Yi, and M |Ui is a smooth mixed Hodge module on Ui (see
Def 14.53). Finally, there should be gluing data (M |Ui, M |Yi, ui, vi) in MHW

for the pairs (Xi, ti).
If (M, F,M•

Q
, W ) is a mixed Hodge module, we say that the perverse

complex M•

Q
is the rational component of the mixed Hodge module and

that W , respectively F , are the weight and Hodge filtration respectively.

That this is indeed equivalent to Saito’s original definition follows from [Sa90].

14.4.3 About the Axioms

The functor which assigns to a mixed Hodge module its rational component
sends MHM(X) to Perv(X; Q). By [Sa88, 5.1.14] and by definition, the cate-
gory of mixed Hodge modules on X is abelian and ratX is faithful and exact.
The functor then extends to give the functor ratX : Db

MHM(X)! Db

cs
(X; Q)

from axiom A.
Since by definition mixed Hodge modules supported on a point are smooth

they give mixed Hodge structures, this proves Axiom B). See also [Sa90,
Thm. 3.98].

Axiom C) being built into the definition of a mixed Hodge module does
not present a di�culty. The asserted semi-simplicity is Prop. 14.37.
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We next pass to axioms D), E). Note that the direct image functors in
general cannot be performed on the level of mixed Hodge modules. The reason
is that they do not even preserve perverse complexes. As an example, let X
be a smooth complex algebraic variety and let aX : X ! pt be the constant
map. Then a⇤

X
Q = Q

X
is not perverse, but it becomes perverse when placed

in degree �dX , i.e. we need to work in the derived category Db

cs
(X; Q). In

particular, the constant mixed Hodge module Q
Hdg

X
[dX ] defined by (XIV–30),

when placed in degree �dX becomes a complex. Over a point it becomes Q
Hdg

and the functor a⇤
X

maps it to Q
Hdg

X
, since the functor ratX is faithful (axiom

A). The main result from [Sa90] confirms axioms D) and E):

Theorem 14.57. Let f : X ! Y be a morphism between complex algebraic
varieties and let M• and N• be bounded complexes of mixed Hodge modules
on X and Y respectively. Recalling the functors ratX and ratY (XIV–1), we
have:

i) there is a bounded complex of mixed Hodge modules f⇤M• on Y such
that f⇤(ratXM•) = ratY (f⇤M•) in Db

cs
(Y ; Q);

ii) there is a bounded complex of mixed Hodge modules f !N• on X such
that f !(ratY N•) = ratX(f !N•) in Db

cs
(X; Q);

iii) the Verdier duality operator extends as an involution DX on the de-
rived category of bounded complexes Hodge modules on X, commuting
with ratX ;
iv) there are operations f⇤, f! in the appropriate derived categories of
mixed Hodge modules such that DY f⇤ = f!DX and DXf⇤ = f !

DY (see
also Remark 13.66) .

This is by no means a trivial result, since we have seen that for non-proper
morphisms the direct image of a filtered holonomic D-module need not be
holonomic, and the inverse image only behaves well for non-characteristic
filtered modules.

Finally, for axioms G), H) we refer to [Sa90, Prop. 2.26]

14.4.4 Application: Vanishing Theorems

The techniques of mixed Hodge modules can be used to derive a vanishing
result. The statement uses the filtered De Rham complex associated to a
filtered DX -module (M, F ) (XIII–41).

Theorem 14.58 (Saito’s vanishing theorem[Sa90, Prop. 2.33] ). Let
Z ⇢ X = P

N be an irreducible projective variety embedded by OZ(1) = Lm.
Let E• be a bounded complex of holomorphic vector bundles on Z. Suppose
that there exists a filtered DX-module (M, F ) supported on Z and an integer
p 2 Z such that the following equality holds in the derived category of bounded
OZ-modules:

E• = Grp

F
(DRX(M, F ))⌦OZ .
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Suppose moreover that (M, F ) is the filtered D-module part of a mixed Hodge
module on X supported on Z. Then the following vanishing results hold

H
i(Z, E• ⌦ L) = 0 for i > 0

H
i(Z, E• ⌦ L�1) = 0 for i < 0.

In the applications below, the filtration on M is the trivial one-step filtration
in degree p. In this case we record

GrF

p�j
DRX(M, F ) = ⌦j

X
(M)[�j + dX ]. (XIV–31)

Corollary 14.59 (Kodaira-Nakano vanishing theorem). Let Z be a
smooth projective variety and L an ample line bundle on Z. Then Hi(Z,⌦j

Z
⌦

L) = 0 for i + j > dZ and Hi(Z,⌦j

Z
⌦ L�1) = 0 for i + j < dZ .

Proof. Take the mixed Hodge module Q
Z
[dZ ] whose filtered D-module part

is !Z with the one-step filtration in degree �dZ . Its De Rham complex is the
usual (shifted) De Rham complex and so from (XIV–31) it follows that E• =
GrF

�dZ�j
DRZ(!Z , F ) = ⌦j

Z
[dZ� j] and so H

i(Z, E•⌦L) = Hi�j+dZ (Z,⌦j

Z
⌦

L) = 0 which proves the first vanishing result. The second is proven similarly.
ut

Remark 14.60. It is not hard to derive the other vanishing results stated in
§ 7.3.2. Saito also shows how to derive the Kollár-Ohsawa vanishing the-
orem which states that Hj(Z, Rkf⇤!Y ⌦ L) = 0 for k � 0, j > 0, L ample
and f : Y ! Z a morphism between projective varieties with Y smooth.

14.4.5 The Motivic Hodge Character and Motivic Chern Classes

We have seen that over any algebraic variety X we have a canonically associ-
ated complex of mixed Hodge modules Q

Hdg

X
, in general only well-defined in

the derived category. If X admits a morphism to S, say f : X ! S we as-
sociate to X the complex f!Q

Hdg

X
2 Db

MHM(S). We want to show, following
[B-S-Y] that this assignment is motivic: it respects the operation of cutting
up X/S in locally closed subsets (relative to S).

We start by explaining the relative version of the Grothendieck group
K0(Var) which came up in Remark 5.56. Let S be a complex algebraic variety
and let K0(Var/S) be the free abelian group on isomorphism classes of com-
plex algebraic varieties over S (i.e. morphisms X ! S) modulo the scissor
relations where we identify the class [X] of X and [X � Y ] + [Y ] whenever
Y ⇢ X is a closed subvariety. We identify K0(Var/pt) with K0(Var).

The direct product between a variety over S and a variety over T gives a
variety over S⇥T . This is compatible with the scissor relations and defines an
“exterior” product K0(Var/S)⇥K0(Var/T )! K0(Var(S⇥T )). When S = T ,
taking instead the fibred product, defines a ring structure on K0(Var/S) with
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unit the class [S] of the identity morphism S
id��! S. Taking T = pt, the exterior

product makes K0(Var/S) into a K0(Var)-module.
For a morphism ' : S ! T , composition defines a push forward morphism

'! : K0(Var/S)! K0(Var/T ) and the fibre product construction gives a pull
back '�1 : K0(Var/T )! K0(Var/S) which are K0(Var)-linear.

Lemma 14.61. There is a well-defined homomorphism, the motivic Hodge-

Grothendieck characteristic:

�c

Hdg
(S) : K0(Var/S)! K0(MHM(S))

[f : X ! S] 7! �c

Hdg
[X/S] = [f! Q

Hdg

X
].

It is compatible with '! and  �1 for any morphism ' : S ! T ,  : T ! S
respectively.

Proof. We only need to show that the above morphism is well defined. So let
i : Z ⇢ X be a closed subvariety and let j : X � Z ,! X be the inclusion of
the complement. For any complex M• 2 Db

MHM(X) we have an adjunction
triangle (XIII–15) for the underlying perverse complexes. By [Sa90, (4.4.1)]
this triangle lifts to an adjunction triangle in the category Db

MHM(X):

j!j⇤M• ������! M•

i⇤i⇤M•
S

S
So ◆

◆
◆/

[1] (XIV–32)

The existence of this distinguished triangle immediately implies compatibility
of the definition with the scissor-relations. ut

Taking dimensions, we land into the ring of constructible functions on S. Let
us recall the definition. For any ring R the ring Ccs(S;R) of R-constructible
functions on S by definition is generated by the characteristic functions 1Z

of a subvariety Z ⇢ S. Given a morphism ' : S ! T , pulling back functions
defines '�1 : Ccs(T ;R) ! Ccs(S;R) and there is also a push forward '! :
Ccs(S;R) ! Ccs(T ;R). This is completely analogous to the construction of
the functor R'! for bounded constructible complexes of R-modules.

Corollary 14.62. The composition dim ��c

Hdg
(S) : K0(Var/S) ! Ccs(S; Q)

is a Q-linear map, compatible with '! and  �1 for any morphism ' : S ! T ,
 : T ! S respectively.

Remark 14.63.Let us give an elementary construction for the Hodge-Grothendieck
characteristic. First observe the following consequence of axiom C), D) and
E):

Complement. We have K0(MHM(X)) = K0(MH
pol(X)). The functor ratX

is compatible with these identifications: it sends a mixed Hodge module to
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its underlying perverse complex. For any morphism f : X ! Y the mor-
phisms f⇤, f! : K0(MHM(X)) ! K0(MHM(Y )) and f⇤, f ! : K0(MHM(Y )) !
K0(MHM(X))under the functor rat correspond toRf⇤, Rf! : K0(Perv(X; Q))!
K0(Perv(Y ; Q)), and f�1, f ! : K0(Perv(Y ; Q)) ! K0(Perv(X; Q)) respec-
tively.

So we have K0(Db
MHM(X)) ' K0(MHM

pol(S; Q). We recall that the cate-
gory MHM

pol(S; Q) is the abelian category of variations of pure Q-polarisable
Hodge structures defined over a dense open smooth subset of a subvariety
Z ⇢ S. It is not hard to see that K0(Var/S) is generated by classes of mor-
phisms f : X ! S for which X is smooth and projective. So we assume that
f : X ! S is proper. Then there is a stratification of S so that over the open
strata f restricts to a smooth morphism. By the scissor relations we may thus
further assume that f itself is smooth with image a smooth subvariety Z ⇢ S.
Then Rjf⇤Q

X
is a polarizable variation of Hodge structures on Z and we have

�c

Hdg
[X/S] =

P
(�1)j [Rjf⇤Q

X
] 2 K0(MHM

pol(S; Q)). In particular we can
use this formula to define the Euler-Hodge characteristic.

A mixed Hodge module on S contains as part of its data a filtered (holo-
nomic) DS-module. We have seen that the gradeds of the De Rham complex
of any filtered DS-module (M, F ) are complexes of OS-modules (XIII–41). If
M is coherent, these gradeds are complexes of coherent OS-modules. These
are components of the De Rham characteristic (XIII–43) introduced in a pre-
vious chapter. However, there we only treated the case when S is smooth. The
whole treatment for D-modules can also be adapted to the case of singular
algebraic varieties, the De Rham functor can be defined and its gradeds give
functors

GrF

j
DR•

S
: DbFDS ! Db

coh
(OS).

This is very well explained in [Sa00, § 1]. Using the definition of the Grothendieck
groupK0(S)of coherent sheaves ofOS-modules as given in Lemma-DefinitionA.20,
it follows that the De Rham characteristic can be defined in the singular case
as well:

Lemma 14.64. The De Rham functor induces the De Rham characteris-

tic

�DR(S) : K0(DbFDS) ! K0(S)[u, u�1]
[(V, F )] 7!

P
(�1)j [GrF

j
DR•

S
(V, F )]uj .

�

This is compatible with proper push forwards, in the sense that for ' : S ! T
a proper map between algebraic manifolds, we have a commutative diagram

K0(DbFDS) �! K0(S)[u, u�1]??y'+

??y'⇤

K0(DbFDT ) �! K0(T )[u, u�1].



14.4 Mixed Hodge Modules 371

The composition

�Mot = �DR(S)��c

Hdg
(S) : K0(Var/S)! K0(S)[u, u�1]

is the motivic Chern class transformation mC⇤ from [B-S-Y]. If S is
smooth and we consider S as a variety over S in a trivial way, setting
ci :=[⇤iTS ] 2 K0(S), we have �Mot(S/S) = c0 � c1u + c2u2 + · · · . For u = �1
this gives the total Chern class of S. So the motivic Chern class transformation
can be viewed as generalization of the ordinary Chern character.

Historical Remarks. The notion of (mixed) Hodge module has been coined by
Morihiko Saito [Sa88]. The axiomatic presentation given here is modelled on [Sa87].
The Kashiwara-Malgrange filtration has been introduced in [Kash83] and [Malg83].
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Homological Algebra

A.1 Additive and Abelian Categories

In this section we recall the definition of additive and abelian categories. We
assume that the reader is familiar with the basic language of category theory.
In particular we assume familiarity with the notion of a category itself (with its
objects and morphisms) as well as with the notions of contra- and covariant
functors between them. Standard references are [Iver, Ge-Ma] and [B-B-D,
Ch. 1].

In abelian categories we have the usual notion of exact sequences and
complexes. We can furthermore define homotopies between complexes. Long
exact sequences are induced by triangles, a crucial notion for defining derived
categories.

Many standard examples of categories are abelian, such as the category
of modules over a fixed ring, but others, like the category of filtered modules
over a fixed ring, are only additive. Sometimes when working with a category
A while using the same objects, we need to invert all arrows. The resulting
category is denoted

A
� (the opposite category of A). (A–1)

In general there are no products in an abelian category and hence it does
not make sense to speak of the tensor product of complexes. However, for
the category of R-modules we do have a tensor product. Here R is a fixed
commutative ring with unit 1. Complexes of free R-modules are also called
R-cochain complexes.

The tensor product C• ⌦R D• of two R-cochain complexes C• and D•

is defined as

(C ⌦R D)n =
L

p+q=n
Cp ⌦R Dq

d(x⌦ y) = dx⌦ y + (�1)px⌦ dy, x 2 Cp, y 2 Dq.
(A–2)
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A.1.1 Pre-Abelian Categories

Definition A.1. Let us fix a category A with a an initial object 0 2 A, i.e. an
object admitting unique morphisms 0! A and A! 0 for every object A 2 A.
We say that f : A! B is a monomorphism, respectively epimorphism if
for all h 2 Hom(C, A), C an object of A the composition f�h 2 Hom(C, B) is
injective, surjective respectively.

1) The zero morphism 0 : A! B is the morphism factoring as A! 0!
B;
2) A kernel Ker f for a morphism f : A! B in A is a pair (K, i) consisting
of a monomorphism i : K ! A such that f�i = 0, which is universal with
respect to this property: if g : B ! A is such that f�g = 0, then g factors
through i;
3) A cokernel Coker f is a pair (C, p) consisting of an epimorphism p : B !
C with p�f = 0, and which is universal with respect to this property;
4) An image Im f is a kernel for a cokernel;
5) A coimage Coim f is a cokernel for a kernel;
6) A category is pre-abelian 1 if zero objects, kernels and cokernels exist
such that for all morphisms f the canonical morphism Coim f ! Im f is
an isomorphism.

A 3-term sequence A
f

�! B
g

�! C in A is exact if Ker g = Im f ; a sequence
. . . An�1 ! An ! An+1 ! . . . is exact if every 3-term sequence of consecutive
terms is exact. In particular we have the short exact sequences

0! A
f

�! B
g

�! C ! 0,

i.e. f is a monomorphism, g an epimorphism, and Ker(g) = Im(f).
A complex is a couple (K•, d•), where {Ki}i2Z is an indexed set of objects

in A and d•, the di↵erential of the complex, is a collection of morphisms
{di : Ki ! Ki+1} with the property that di+1�di = 0 for all i 2 Z. The
cohomology of K• is the complex H•(K•) with trivial di↵erential and where

Hq(K•) = Ker(dq)/ Im(dq�1) = Ker
�
Coker(dq�1)! Coim(dq)

�
. (A–3)

We need the notion of a shifted complex:

Definition A.2. If n > 0 the complex K•[n] is obtained from K• by shifting
it n places to the left and multiplying the di↵erentials by (�1)n; in other
words, for any integer n the complex K•[n] is obtained by placing Kk+n in
degree k and taking (�1)ndk+n for the k-th di↵erential. In particular

Hi(K•[n]) = Hi+n(K•).
1 In [Iver] this is called an exact category; however this is di↵erent from the more

established notion due to Quillen [Quil72]
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AcomplexK• isbounded below,bounded above, respectively bounded,
if Ki = 0 for i su�ciently small, i su�ciently large, respectively |i| su�ciently
large. A complex is acyclic if it has zero cohomology. A morphism of com-
plexes f : K• ! L• is a collection of morphisms f i : Ki ! Li compatible
with the di↵erentials, i. e. f i+1�di = di�f i for all i. Such a morphism induces a
morphism H•(f) in cohomology and we say that f is a quasi-isomorphism
if H•(f) is an isomorphism. We denote this by

f : K•
qis

⇠��!L•.

If such an f exists, we say that K• and L• are quasi-isomorphic. For
a morphism between complexes f : K• ! L• the shifted morphism
f [n] : K•[n] ! L•[n] is defined by taking for f [n] in degree p the morphism
f in degree p + n.

A sequence of complexes

0! K•
f

�! L•
g

�!M• ! 0 (A–4)

is called short exact if for every degree separately it is a short exact sequence.
Such a short exact sequence can be shown [Iver, I.2] to induce a long exact
sequence in cohomology

· · ·! Hi(K•)
H

i
(f)

����! Hi(L•)
H

i
(g)

����! Hi(M•) �
i

��! Hi+1(K•)! · · · .

The map �i is called the connecting homomorphism and behaves functo-
rially in the obvious way (loc. cit.).

Example A.3. Given a complex K• in A its two truncations are given by

⌧kK• := · · ·Kk�2 ! Kk�1 ! Ker dk ! 0! · · · (A–5)
⌧�kK• := . . . ! 0! Kk/(Im dk�1)! Kk+1 ! Kk+2 ! · · · .(A–6)

These fit into a short exact sequence

0! ⌧kK• ! K• ! ⌧�k+1(K•)! 0. (A–7)

The associated long exact sequence shows that K• has the same cohomology in
degrees  k as its truncated complex ⌧kK•, and zero cohomology otherwise.
A similar statement is true for ⌧�kK•.

A.1.2 Additive Categories

Basic for additive categories is the notion of direct sum for two objects
P,Q 2 A. This is a triple (P�Q, i, j) consisting of an object P�Q 2 A and two
morphisms i : P ! P �Q and j : Q! P �Q enjoying a certain universality
property: whenever there are morphisms f : P ! X and g : Q ! X to the
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same object X, there should be a unique morphism P �Q! X making the
following diagram commutative

P

P �Q �! X.

Q
�

�✓

�
�

�
�

��*

@

@R

H
H

H
H

HHj

j
g

i f

In particular we have projectors p : P � Q ! P and q : P � Q, i.e. p�i = 1,
q�j = 1, p�j = 0, q�i = 0.

Definition A.4. 1) An additive category is category with a zero object,
in which for all objects A and B the set Hom(A, B) has the structure of an
abelian group such that compositions become bilinear, and in which every
two objects have a direct sum.
2) An abelian category is a pre-abelian category which is moreover addi-
tive.
3) For an abelian category A with the additional property that its isomor-
phism classes of objects are sets (such a category is called a small category)
we define the associated Grothendieck group K0(A) as the quotient of
the free Z-module on isomorphism classes [V ] of objects V in A under the
equivalence relation [V ] = [U ] + [W ] whenever there is an exact sequence
0! U ! V !W ! 0 in A. The group structure is the obvious one.

Examples A.5. 1) Modules over a fixed ring with 1, commutative or not, form
an abelian category. The category of filtered modules over a fixed ring (see
Sect. A.3.1) is only additive. The problem is that the natural map from
the coimage to the image is not always an isomorphism. Indeed, tracing
through the definitions, this holds precisely if the morphism is strict (see
formula (A–26)). The category of filtered modules with strict morphisms is
pre-abelian but not additive, because the sum of strict morphisms need not
be strict.
2) The category of sheaves of abelian groups on a fixed topological space is
abelian [Iver, II.2.5.].
3) Let (X,OX) be a ringed space. The category of OX -modules is abelian
[Gode, II.2].

In an additive category a sequence

C
f

�! D
g

�! E

is split exact, if for all objects X the sequence

0! Hom(X,C)! Hom(X, D)! Hom(X,E)! 0
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is an exact sequence of abelian groups. It follows that g has a section s :
E ! D, i.e. g�s = idE , and that f has a retraction r : D ! C, i.e. r�f =
idC . Moreover, g�f = 0, r�s = 0. The sequence P

i�! P � Q
q

�! Q, the model
split exact sequence, exemplifies this. We claim that a section s determines a
unique retraction r for which f�r + s�g = idD and similarly a given retraction
r determines a section s with the stated property. To see this, note that
g�(idD �s�g) = 0 and so by the splitting property there is a unique r 2
Hom(D,C) for which f�r = idD �s�g. Since f�r�f = f and hence f�(r�f �
idC) = 0, by the splitting property one must have rf = idC , i.e. r is a
retraction. The second statement can be seen in a similar way.

A split exact sequence of complexes in an additive category

K•
f

�! L•
g

�!M• (A–8)

is a sequence of complexes such that Kp
f

p

��! Lp
g

p

��!Mp is split exact for all p.
Note that is not required to have a section s : M• ! L• which is a morphisms
of complexes. For this reason one writes s : M ! L for the collection of
sections sp : Mp ! Lp. As noted above, one has a unique retraction r for
which idL = f�r+s�g. We set h = r�d�s. Although r and s are not morphisms,
h turns out to be a morphism of complexes

h : M• ! K•[1].

For reasons to become clear in § A.2.1 the map h will be called the homotopy
invariant of the split exact sequence.

The notion of an exact sequence does not make sense in an additive cate-
gory, so there are no long exact sequences associated to split exact sequences,
but we can view h as a substitute for the connecting homomorphism. In fact,
we have

Lemma A.6. The homotopy invariant of a split exact sequence of complexes
in an abelian category induces the connecting homomorphism in cohomology.

A central construction in additive categories is that of the cone over a
morphism:

Definition A.7. Let K•, L• be two complexes in an additive category A and
let f : K• ! L• be a morphism of complexes.

1) Let f : K• ! L• be a morphism of complexes in A. The (mapping)
cylinder Cyl•(f) of f is the complex

Cylq(f) = Kq+1 �Kq � Lq

d(x, y, z) = (�dx,�x + dy, f(x) + dz), x 2 Kq+1, y 2 Kq, z 2 Lq.

2) The cone Cone•(f) over f is the complex

Coneq(f) = Kq+1 � Lq

d(x, z) = (�dx,�f(x) + dz), x 2 Kq+1, z 2 Lq.
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There is a split exact sequence relating cylinder and cone

K• k�! Cyl• f
`�! Cone• f. (A–9)

The map k sends x 2 Kq to the second summand of Cylq f = Kq+1�Kq�Lq

and ` sends (x, y, z) 2 Kq+1 � Kq � Lq to (�x, z) 2 Coneqf = Kq+1 � Lq.
This map has a section given by (y, z) 7! (�y, 0, z) showing that the sequence
is split.

A.2 Derived Categories

A.2.1 The Homotopy Category

For the moment we work in a fixed additive category. Let us define a ho-
motopy between two homomorphisms f, g : K• ! L• to be a collection of
morphisms kq : Kq ! Lq�1 such that fq � gq = dq�1�kq + kq+1�dq:

Lq�1

??yd
q�1

Kq Lq

??yd
q

Kq+1

⌘

⌘
⌘3

⌘

⌘
⌘+

-

-

k
q

k
q+1

f
q

g
q

Homotopy is an equivalence relation compatible with composition. Introduce
the additive group

[K•, L•] = {homotopy classes of morphisms K• ! L•}.

For any two complexes K•, L• we introduce

Hom•(K•, L•), Homn(K•, L•) =
Y

i2Z

Hom(Ki, Li+n), (A–10)

i.e. f 2 Homn(K•, L•) can be written f = (f i)i2Z, f i 2 Hom(Ki, Li+n). To
make this into a complex of abelian groups we define a boundary by (df)i =
di+nf i + (�1)n+1f i+1di. This implies that a degree n homomorphism f :
K• ! L• satisfies df = 0 if and only if it gives a homomorphism of complexes
K• ! L•[n]. Moreover, if f � f 0 = dg, then g defines a homotopy between
the two resulting homomorphisms, and conversely. In other words, we have

[K•, L•[n]] = Hn Hom•(K•, L•). (A–11)

A homomorphism f : K• ! L• admitting an inverse up to homotopy is called
a homotopy equivalence and the two complexes K• and L• are said to be
homotopy equivalent.
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Definition A.8. The homotopy category of complexes in an additive
category A is the category K(A) of complexes in A where the morphisms
are the homotopy classes of morphisms between complexes. Similarly, using
bounded, or bounded below, or bounded above complexes we get Kb(A),
K+(A), K�(A) respectively.

What makes these categories useful is the following two easily verified
observations [Iver, I.4] and [Iver, I.5.3]:

Lemma A.9. For any split exact sequence (A–8) with splitting s : M ! L
and related retraction r : L ! K the homotopy invariant h = r�d�s is a well
defined invariant

h 2 [M•, K•[1]]

of the split sequence.

Lemma A.10. In abelian categories homotopic maps induce the same maps
in cohomology.

Remark A.11. The homotopy invariant of the split exact sequence (A–9) is
the projection of the cone onto its first factor. We similarly have the split
exact sequence of the cone

L• ! Cone•(f)! K•[1]. (A–12)

The homotopy invariant of this sequence turns out to be equal to �f .

Let us next make some remarks which show the flexibility of working in
the homotopy category. First of all [Iver, p. 24]:

Lemma A.12. The map (0, f, id) induces a homotopy equivalence between the
complexes Cyl•(f) and L• so that within the homotopy category any morphism
of complexes f : K• ! L• is isomorphic to the injection K• ,! Cyl•(f)
figuring in the split exact sequence (A–9). In this sense (A–12) is a shifted
version of (A–9).

As a second observation, from the long exact sequence associated to (A–12)
we deduce:

ObservationA.13.Ahomomorphism between complexes is a quasi-isomorphism
if and only if its cone is acyclic.

As an application, suppose that we have a commutative square of complexes

A• i�! B•

??y⇡
0

??y⇡

C•
j

�! D•.
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Corollary A.14. The cone over the morphism

Cone•(i)
(⇡
0
,⇡)

����! Cone•(j)

is equal to the cone over

A•[1]
(�i,⇡

0
)

�����! Cone•
⇣
B• � C•

⇡+j

���! D•

⌘

Hence (⇡0,⇡) is a quasi-isomorphism if and only if (�i,⇡0) is a quasi-
isomorphism.

We leave the (easy) proof to the reader.

A.2.2 The Derived Category

We refer [Iver, Chap. IX] and [B-B-D, Chap. 1] for the following discussion.
To define the derived category of a given category, we are going to in-

vert the quasi-isomorphisms in the relevant homotopy category (Def. A.8).
Formally this resembles the procedure of localizing a ring in a multiplicative
set, except that here we localize in a family of morphisms and so we need
to distinguish between left and right fractions as we now explain. Instead of
fractions in the homotopy category, we start looking at any additive category
H.

Definition A.15. A collection S of morphisms in an additive category H is
a multiplicative system if

i) The composition of two (composable) morphisms in S belongs again to
S; the identity of every object belongs to S,
ii) Any diagram in H

•??ys

• ! •
with s 2 S can be completed to a commutative diagram

• ! •??yt

??ys

• ! •

with t 2 S. Similarly with the arrows reversed.
iii) For f, g : K ! L in H the existence of s : K 0 ! K in S with fs = gs
is equivalent to the existence of t : L! L0 in S such that tf = tg.

Definition A.16. Let H be any additive category and let S be a multiplica-
tive system. The objects of the category S�1

H are the objects of H. The mor-
phisms are the equivalence classes of right fractions, where a right fraction
a/s from K to L is a diagram
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a/s : K
s � • a�!L, s 2 S,

and where the central dot is any object in H. Any two right fractions a/s and
b/t from K to L are defined to be equivalent if there is a fraction c/u fitting
into a commutative diagram

•x??
K ��� • ���! L??y

•

⇢

⇢
⇢=

⇢

⇢
⇢>

Z

Z
Z~

Z

Z
Z}

c

as

t

u

b

(A–13)

We note that various verifications are in order here, for instance one should
show that this indeed defines an equivalence relation and that replacing the
morphisms by right (or left) fractions indeed defines a category.

Definition A.17. Let A be an additive category. The set S of homotopy
classes of quasi-isomorphisms in the associated homotopy category K(A) is a
multiplicative system. The derived category D(A) is the category S�1K(A)
having the same objects as K(A), i.e. the complexes in A; however the mor-
phisms are equivalence classes of right fractions

a/s : K•
qis

⇠ ��
s

• a�! L•

with a a homotopy class of a morphism between complexes and s a homo-
topy class of a quasi-isomorphism. The equivalence relation is generated by
diagrams (A–13). Analogously, using bounded, or bounded below, or bounded
above complexes we obtain the derived categories Db(A), D+(A), and D�(A)
respectively.

Derived categories are in general not abelian since short exact sequences are
not preserved under quasi-isomorphisms. In the derived category one should
instead work with triangles:

Definition A.18. A triangle in K(A), respectively D(A) is a diagram

L•
f

�����! M•

N•

S

S
So ◆

◆
◆/

h
g[1] (A–14)

whose morphisms are in the homotopy category, respectively the derived cat-
egory for A; the notation [1] means that the left hand morphism in fact has
the shifted complex for its target: h : N• ! L•[1]. It will be clear what a
morphism or an isomorphism between triangles should be.



384 A Homological Algebra

The standard example of a triangle is given by the triangle defined by any
split exact sequence of complexes (A–4), with h the homotopy invariant. Tri-
angles isomorphic to such triangles are called distinguished triangles. In
fact, in the derived category, all exact sequences are isomorphic to split exact
sequences and hence give rise to distinguished triangles:

Lemma A.19. Within the derived category an exact sequence of complexes
0! K•

f

�! L•
g

�!M• ! 0 in A (split or not) is isomorphic to the split exact
sequence (A–9) and so defines a distinguished triangle

K•
f

�����! L•

Cone•(f)
S

S
So ◆

◆
◆/

[1] (A–15)

Sketch of the proof: By [Iver, XI,3] the morphism (0, g) : Cone•(f)!M• is a
quasi-isomorphism. So M• can be replaced by the cone over f . We may also
(Lemma A.12) replace L• by the cylinder on f , thereby obtaining an exact
commutative diagram

0 ! K• k�! Cyl•(f) `�! Cone•(f)! 0��� (0,f,1)

??y o (0,g)

??y o

0 ! K•
f

�! L•
g

�! M• ! 0,

(A–16)

where the last two vertical arrows are quasi-isomorphisms. This completes the
proof. ut

Any triangle induces a long sequence of homomorphisms in cohomology

· · ·Hi(K•)
H

i
(f)

����! Hi(L•)
H

i
(g)

����! Hi(M•)
H

i
(h)

����! Hi+1(K•)! · · ·

and it is exact when the triangle is distinguished. Isomorphic triangles give
the same exact sequences so that in the derived category isomorphism classes
of distinguished triangles play the role of short exact sequences. This remark
leads us to the following considerations for the Grothendieck group.

Lemma A.20. Let K• be a bounded complex in A. Define

[K•] :=
X

i2Z

(�1)i[Ki] 2 K0(A). (A–17)

Then

i) [K•] =
P

i2Z
(�1)i[Hi(K•)] and hence only depends on the homotopy

class of K•.
ii) For every distinguished triangle (A–14) we have [M•] = [L•] + [N•].
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Proof. i)
P

i2Z
(�1)i[Ki] =

P
i2Z

(�1)i[Hi(K•)] is standard and can easily be
verified by induction.
ii) This is because distinguished triangles induce long exact sequences in co-
homology. ut

Remark. These relations imply that there is no need to define a Grothendieck-
group K0(Db

A): by (A–17) complexes K• in A define an element [K•] in
K0(A).

We have seen that the sequence relating cylinder and cone (A–9) can be
shifted to give the sequence of the cone (A–12). The triangle for this sequence
is turned with respect to the triangle for the first sequence. Since all distin-
guished triangles are isomorphic to such triangles this shows that distinguished
triangles may always be turned to give new distinguished triangles:

L•
f

�����! M• M•
g

�����! N•

N• L•[1]
S

S
So ◆

◆
◆/

h
g

[1]  
S

S
So ◆

◆
◆/

�f [1]
h

[1]

See also [Iver, I.4.16]. So, in the derived category the three terms of an exact
sequence can be cyclically interchanged up to signs.

Suppose that instead of D(A) we start o↵ with any additive category D

equipped with a shift X 7! X[1]. Then the concept of a triangle like (A–14)
makes sense. A collection of triangles verifying the axioms “TRI, TRII, TRIII,
TRIV” from [Verd96, Chap. II] is called a set of distinguished triangles. If
D is equipped with such a set we say that it is a triangulated category. As
expected, a typical example is the derived category of an abelian category to-
gether with its set of distinguished triangles. Indeed, the axiom TRI is lemma
A.12 and TRII says that we may turn triangles. The axiom TRIII tells us that
if you have two distinguished triangles such that two corresponding sides of
the triangles are related by morphisms forming a commutative diagram, this
holds for the other sides as well in an obvious compatible way. This is clear
in the case of the derived category, since the triangles are built from one side
using the cone. The last axiom is called the octahedral diagram and is too
involved to state here. See loc. cit. Verdier’s axioms will not be explicitly used
in this this book.

The derived category of A contains the category A as the full subcategory
of complexes K• having only cohomology in degree 0, its core. Let Dk

A

respectively D�k
A be the full subcategory of complexes having only cohomol-

ogy in degree  k, respectively � k. For any complex K• in A its truncated
complexes ⌧kK•, respectively ⌧�kK• define objects in the category Dk

A,
D�k

A respectively and the exact sequence (A–7) transforms into a distin-
guished triangle. Note also that in D(A) we have

⌧0⌧�0[K•[k]] = Hk(K•).
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These truncated complexes give the proto-type of a so-called t-structure on a
triangulated category.

Definition A.21. Let D be a triangulated category with a shift X 7! X[1].
For any object X of D, let X[k] be the k-th iterate of the shift applied to X.
A t-structure on D consists two full subcategories D

0 and D
�0 such that,

setting

D
k := D

0[�k] = {X[�k] | X 2 D
0}

D
�k := D

�0[�k] = {X[�k] | X 2 D
�0},

the following conditions are satisfied

i) D
�1 ⇢ D

0 and D
�1 ⇢ D

�0;
ii) There are no non-trivial morphisms from objects in D

0 to objects in
D
�1;

iii) For any object X in D, there is an associated object X0 in D
0,

respectively X�1 in D
�1 which together fit into a distinguished triangle

X0 ����! X

X�1

S

S
So ◆

◆
◆/

[1]

We have a full subcategory

C(D, t) :=D
0 \D

�0 (core of the t-structure)

which turns out to be an abelian subcategory of D. The functor

tHk(X) := [⌧�0⌧0(X[k]) 2 C(D, t). (A–18)

is a cohomological functor [B-B-D, Thm. 1.3.6], i.e. for any distinguished tri-
angle (A–14) the short sequence 0! tH0(L)! tH0(M)! tH0(N) is exact,
and can be prolonged to a long exact sequence in the obvious way.

A.2.3 Injective and Projective Resolutions

An injective object of an abelian category A is an object I of A such that
any morphism from a subobject K of L (in A) to I extends to L. In other
words, given i and f in the following diagram, f̄ exists making it commutative.

0 �! K
i����! L??yf

I

⌘

⌘
⌘+

f̄
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Similarly, reversing the arrows, we define a projective object: every mor-
phism to a quotient object K of L (i.e. K is image of a surjection L ⇣ K)
factors over L.

If every object in A is a subobject of an injective object, one says that A

has enough injectives. If every object is a quotient object of a projective
objects, one says that A has enough projectives.

Examples A.22. 1) The category of (left or right) modules over a not nec-
essarily commutative ring with unit is an abelian category with enough
injectives since every module is a submodule of an injective module. See
[Gode, §I.1.4]. It also has enough projectives since any module is a quotient
of a free module and free modules are projective.
2) The category of sheaves of abelian groups on a fixed topological space
has enough injectives [Gode, II.3.1], but not in general enough projectives.
3) Let (X,OX) be a ringed space. The category of sheaves of OX -Modules
is an abelian category with enough injectives. See [Gode, II, 7.1.1].

Definition A.23. A (right) resolution of an object A in an abelian category
consists of a complex I• which fits into an exact sequence

0! A
✏�! I0 d

0

��! I1 d
1

��! I2 · · · .

Equivalently, this is a quasi-isomorphism A
qis

⇠��! I• where A is considered as a
complex concentrated in degree 0. We say that the resolution is injective if
the Iq are all injective.

Similarly, by reversing arrows we get a left resolution, and by replacing
“injective” by “projective”, we arrive at the notion of a projective resolu-
tion.

One can easily prove that any two injective resolutions of A are related by
a quasi-isomorphism unique up to homotopy. Moreover, if I• is an injective
resolution of A, J• an injective resolution of B, any given homomorphism
f : A! B can be extended to a homomorphism of complexes

{0! A! I•}
f,f

•

���! {0! B ! J•}

and any other extension of f is homotopic to it. More generally, one has [Iver,
Theorem I.6.1, I.6.2]:

Theorem A.24. Suppose A has enough injectives. Then
1) Every bounded below complex admits an injective resolution, i.e. a quasi-
isomorphism to a bounded below injective complex.
2) Let f : K• ! L• be a quasi-isomorphism and I• a bounded below complex
of injective objects. The morphism

[L•, I•]! [K•, I•]
g 7! g�f

is an isomorphism.



388 A Homological Algebra

This theorem implies that any bounded below complex K• maps quasi-
isomorphically to a complex I• of injectives, unique up to homotopy. We call
any such complex I• an injective resolution of K• and denote it by I(K•).
Using the existence and uniqueness up to homotopy of such injective resolu-
tions, one can show [Iver, Chapt. XI] that the derived category of bounded
below complexes can be described concretely as follows.

Lemma A.25. Let A be an abelian category with enough injectives. The de-
rived category D+(A) is the category whose objects are the bounded below com-
plexes in A, and whose morphisms are the homotopy classes of maps between
injective resolutions of the respective complexes.

Needless to say that similar results hold for projective resolutions if these
exist.

A.2.4 Derived Functors

We start with two abelian categories A and B having enough injectives and
a left exact additive functor T : A! B. This means that

0! T (K)
T (f)

���! T (L)
T (g)

���! T (M)

is exact whenever 0! K
f

�! L
g

�!M is an exact sequence in A.
For any bounded below complex K• in A we choose an injective resolution

I(K•) and for any map f : K• ! L• we choose an extension I(f) : I(K•)!
I(L•) of f as before. We define the right derived functor

RT : D+(A)! D+(B)

upon setting RT (K•) = T (I(K•)) and RT (f) = T (I(f)). Theorem A.24
implies that this is well defined up to a quasi-isomorphism. The i-th derived
functor of T

RiT (K•) := Hi(RT (K•))

is then independent of the chosen injective resolution. In particular, for any
object K of A, the derived functors RiT (K) are defined as

Hi
�
T (IK0)! T (IK1)! · · ·

�

where IK• is an injective resolution of K.

Definition A.26. We say that any object K of A is T -acyclic if RiTK=0 for
all i > 0 and a complex K• is T -acyclic if all its components Kp are T -acyclic.

There are long exact sequences for the derived functor associated to short
exact sequences:
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Lemma A.27. Let A and B two abelian categories having enough injectives
and let T : A ! B be a left exact functor. For any short exact sequence of
bounded below complexes in A

0! K•
f

�! L•
g

�!M• ! 0

connecting homomorphisms d : T (M i)! T (Ki+1) exist inducing a long exact
sequence

· · ·! RiT (K•)
R

i
f

���! RiT (L•)
R

i
g

���! RiT (M•) d�! Ri+1T (K•)! · · ·

Examples A.28. 1) The function “taking global sections” defines a functor

� : {Sheaves on X} �! {Abelian groups}

whose derived functor R� by definition computes the hypercohomology
groups

H
i(X,F•) :=Ri� (F•). (A–19)

We can also use this for a single sheaf F viewed as a complex in degree
0 and write Hi(X,F) instead of H

i(X,F). Later, in § B.2.4 we discuss
another definition of sheaf cohomology and compare the two.
2) Fix any abelian category A, a bounded above complex N•, and consider

Hom•(N•,�) : A �! {Complexes of abelian groups}

which is a left exact additive functor on bounded below complexes. Its
derived functor is the Ext-functor:

Exti(N•, K•) = Ri Hom•(N•, K•), N• 2 D�(A), K• 2 D+(A).

3) Fix a topological space X and a commutative ring R with unit. For two
sheaves F , G of R-modules on a fixed topological space, the presheaf

U 7! HomR(F|U,G|U)

defines the sheaf Hom(F ,G). This gives a bi-functor

Hom : {R-sheaves on X}⇥ {R-sheaves on X} �! {R-sheaves on X}.

If instead we have two complexes of R-sheaves, say F• and G•, it will
be clear how to define the Hom-complex Hom•(F•,G•) of R-sheaves. The
procedure from the previous example can then be used to define the Ext-
sheaves

Exti(F•,G•) = RiHom(F•,G•),
F• 2 D�(R-sheaves on X)�, G• 2 D+(R-sheaves on X),

where the index � means that we work in the opposite category (A–1).
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4) Let (X,OX) be a ringed space. Working with complexes of OX -modules
F• (bounded above), G• (bounded below), and replacing R by OX in the
above example, we get the Hom-complex of OX -modules Hom•

OX
(F•,G•)

leading to the Ext-sheaves

Exti
OX

(F•,G•) = RiHomOX (F•,G•),
F• 2 D�(OX -modules on X)�, G• 2 D+(OX -modules on X).

Finally a few words about right exact functors T : A ! B. To define
the left derived functor LT , we assume that A has enough projectives and we
use projective resolutions in A instead of injective resolutions. So if K 2 A,
choose a projective resolution P• and define

LTK :=T (P•), LiTK = H�i(T (P�•).

The minus sign is needed, because we work with cohomology of complexes.

Example A.29. Fix a commutative ring R with unit and consider the category
of R-modules. The tensor product is right exact and for two R-modules M
and N we define

M ⌦L
R

N :=P• ⌦R N, Tori(M,N) :=H�i(M ⌦L
R

N).

In fact, instead of projective resolutions, one may use resolutions by flat R-
modules, i.e. modules having the property that tensoring by them preserve
exactness.

Another version of this example is the tensor product of R-sheaves on a
topological space.

We turn now to functors between triangulated categories. We say that
T : D ! D

0 is an additive functor if T intertwines the shifts and maps
distinguished triangles into distinguished triangles. If both categories have a
t-structure, denoting ✏ : C(D) ! D the natural inclusion of the core, we can
introduce the associated functor between the cores:

tT := tH0�T �✏ : C(D, t)! C(D0, t). (A–20)

We say that T is left exact, respectively right exact with respect to the
t-structure if T maps D

0 to D
00, respectively T (D�0) ⇢ (D0�0). If T is

both left and right exact it is called exact. Note that this terminology is
compatible with the usual notions; if for instance F is a left exact functor
between abelian categories, the derived functor RT is left exact with respect
to the natural t-structure on the derived category.
Remark. For functors T : A! B between abelian categories A,B which fail
to have enough projectives (or injectives) there is an abstract approach giving
conditions on T which guarantee the existence of RT (or LT ) enjoying certain
universal properties. For such T the derived functor RT (or LT ) having these
properties then still exists. See for instance [Hart69, Verd77]. We shall not
use this theory except for the Ext-functor where we follow Yoneda’s version
of Verdier’s approach. See § A.2.6.
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A.2.5 Properties of the Ext-functor

Let N•, respectively K• be a bounded, a bounded below complex in A respec-
tively. Let I(K•) be an injective resolution of K•. Using (A–11) and Theorem
A.24 we find

Exti(N•, K•) :=[N•, I(K•))[i]]
= Hi(Hom•(N•, I(K•)) = HomD+(A)(N•, K•[i]).

�
(A–21)

As an example, consider an exact sequence

0! K•
f

�! L• !M• ! 0.

of bounded complexes in A. We have seen (A–16) that in Db(A) such a se-
quence can be represented by the split exact sequence relating the cylinder
and the cone over f . The extension class of the exact sequence is the class in
Ext1(M•, K•) which corresponds to the homotopy invariant h 2 [M•, K•[1]].
It appears in the long exact sequences for the Ext-groups by way of cup
product. To explain this notion, observe that the composition of morphisms
induces the composition product

Exti(M•, P •)⇥ Extj(P •, N•) �! Exti+j(M•, N•)
(e, f) 7! f [i]�e := f [ e

�
(A–22)

and this defines cup product. The first long exact sequence for the Ext-groups
for the above short exact sequence in the derived category Db(A) reads:

· ··! [N•, K•[i]] ! [N•, L•[i]] ! [N•, M•[i]] ! [N•, K•[i + 1]] ! · · ·����

����

����

����
· ··! Exti(N•, K•)!Exti(N•, L•)!Exti(N•, M•)! Exti+1(N•, K•)! · · ·,

where the connecting homorphism, say di is given by [1, h[i]] [Iver, I,4.8] i. e
dia = h [ a

There is a second long exact sequence

· ··! [M•, N•[i]] ! [L•, N•[i]] ! [K•, N•[i]] ! [M•, N•[i + 1]] ! · · ·����

����

����

����
· ··!Exti(M•, N•)!Exti(L•, N•)!Exti(K•, N•)!Exti+1(M•, N•)! · · · ,

where the connecting homorphism di is given by (�1)i+1[h, 1] [Iver, I,4.9] i. e
dia = (1)i+1a [ h.

A.2.6 Yoneda Extensions

In this section we work with any abelian category A, with or without enough
injectives. The formula (A–21) gives a definition for the Ext-groups in general:

Extn(A, B) :=HomDA(A, B[n]) (A–23)
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Remark A.30. There is one thing to check here: the natural map HomA(A,B)!
HomDA(A, B) should be a bijection. This can be seen as follows. Any ho-
momorphism in the derived category is represented by a fraction f/s with
f : L• ! B a morphism of complexes and s : L• ! A a quasi-isomorphism.
Then f induces a morphism g : Ker d0

L
/ Im d�1

L
and s gives an isomorphism

t : H0(L) = Ker d0

L
/ Im d�1

L
! A. Hence f/s yields a true morphism g�t�1

in A which in the derived category equals f/s. This proves surjectivity. As to
injectivity: if f : A! B is a morphism in A, it is zero in the derived category,
if for some quasi-isomorphism s : L• ! A and some map g : L• ! B homo-
topic to zero we have f�s = g. Again, replacing L by H0(L), we may assume
that L is a single object and hence g = 0 and hence also f = 0.

We give Yoneda’s alternative path to extensions as explained for instance
in [Iver, XI. 4]. Let us start with a fraction f/s with f : L• ! B[n] a morphism
and s : L• ! A a quasi-isomorphism. The fact that s is a quasi-isomorphism
means that Hk(L•) = 0 for k 6= 0 and that H0(s) : H0(L•) ⇠�! A. Replacing
L• by the doubly truncated complex K• = ⌧0⌧��nL• (see Example A.3 for
the notation) we get a bounded complex concentrated in degrees [�n, 0] with
the same cohomology in degrees �n, . . . , 0. Now extend K• to degree 1 by
placing in this degree the object K1 := Ker d0

L
/ Im(d�1

L
) ' A and by taking

for the boundary K0 ! K1 the natural map

K0 = Ker d0

L
! K1 := Ker d0

L
/ Im(d�1

L
) ' A! 0.

The resulting complex K• is then exact. The morphism of complexes f : L• !
B[n] induces g : K• ! B[n] whence an inclusion h : B[n] ! Cone•(g) = C•.
Adding h on the left, we obtain an exact sequence of the form

E :
h
0! B�! C�n = B �K�n+1 ! · · ·! C�1 = K0 i

0

��! A! 0
i
. (A–24)

This is an n-fold extension of A by B defined by f/s. Since fractions like
f/s can be represented in various ways the extension is not unique; we need
an equivalence relation on extensions which takes care of the ambiguity. It
turns out that the equivalence relation generated by congruence is the right
one, where we say that E and

E0 =
h
0! B�! K 0

�n+1 · · ·! K 0
0 i
00

��! A! 0
i

(A–25)

are congruent if there is a commutative diagram

0 ! B ! K�n+1 ! · · ·! K0 ! A ! 0
k # # k

0 ! B ! K 0�n+1 ! · · ·! K 00 ! A ! 0.

The set Exn(A, B) of n-fold extension of A by B is made into a bi-functor
as for the usual Ext-groups: given u : A0 ! A and v : B ! B0 there are
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induced maps Exn(u) : Exn(A0, B) ! Exn(A, B), the pull-back along u
and Exn(v) : Exn(A, B) ! Exn(A, B0), the push-out along v. The pull-
back is defined as follows. Replace A by A0, K0 by

K 0
0 = Ker[(�i0, u) : Kn�1 �A0 ! A].

and i0, i�1 by the obvious maps. For the push-out, replace B by B0, K�n+1

by
K 0
�n+1 = Coker[(�i0, v) : B ! K�n+1 �B0].

and i�n+1, i�n+2 by the obvious maps. Let � : A ! A � A be the diagonal
embedding and let s : B � B ! B be the codiagonal (or addition map).
Taking termwise the direct sum of two n fold extensions of A by B followed
by Exn(�)Exn(s) defines the Baer sum and makes Exn(A, B) into a group.

Conversely, start with an n-fold extension of A by B, say

E : [0! B = K�n ! K�n+1 · · ·! K0 s�! A! 0].

It can be written in the form of a quasi-isomorphism s : K•

qis

⇠��!A. Together
with the morphism f : K• ! B[n] of complexes induced by the identity map
on B this produces the fraction f/s, a morphism form A to B[n] in the derived
category of A. One can furthermore show that congruent extensions define the
same fraction. This motivates the following definition.

Definition A.31. Given an n-fold extension of A by B as above, the class
of (�1)n(n+1)/2f/s in HomDA(A, B[n]) is called the Yoneda class of the
extension.

The preceding discussion can be summarized as follows:

Lemma A.32. Taking the Yoneda class establishes a 1-1 correspondence be-
tween Exn(A, B) and Extn(A, B) = HomDA(A, B[n]). We shall therefore iden-
tify the two groups.

Letus discuss the composition product of two extensions h2HomDA(L•,M•[m])
and k 2 HomDA(K•, L•[n]). Recall (A–22) that this is the extension h [ k 2
HomDA(K•, M•[n + m]) defined by h[m]�k. In the language of Yoneda-
extensions, given an extension of B by C

G = [0! C ! G�m�1 ! G�m�2 · · ·! G0 s�! B ! 0]

and an extension of A by B

H = [0! B
s
0
��! H�n�1 ! H�n�2 · · ·! H0 ! A! 0],

one defines the spliced extension by

G [H = [0! C ! G�m�1 · · ·! G0 s�s0���! H�n�1 · · ·! H0 ! A! 0].
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By [Iver, XI.4.6] the Yoneda-class of G[H is the composition product of the
Yoneda-classes of G and H. This explains the somewhat strange sign which is
needed since the cup product is graded commutative and not commutative.

As a consequence, we have

Lemma A.33. If Extk(A,�) is right exact for all A in the category, then
Extn(A, B) = 0 for n � k + 1 and all A and B in the category.

Proof. To calculate the Yoneda-class of an n-fold extension E of A by B we
may splice E from an k-fold extension of X by B and an n� k-fold extension
of A by X. It su�ces therefore to prove that Extk+1(A, B) = 0. Now we view
a (k + 1)-fold extension of A by B as spliced from a simple extension

0! B ! H ! C ! 0

and a k-fold extension from A to C. We consider the connecting homo-
morphism Extk(A, C) ! Extk+1(A, B) from the long exact sequence for
Hom(A,�) with respect to the preceding short exact sequence. Since Extk(A,�)
is right exact, this connecting homomorphism is zero. Now we apply this to
the Yoneda class f 2 Extk(A, C) of the second extension. If the Yoneda-class
of the short exact sequence is e, the connecting homomorphism is given by
taking the composition product with e (see loc. cit. I.8.8 in conjunction with
XI.4.5]). But this gives the Yoneda class e [ f of the extension we started
with. This class is therefore zero. ut

A.3 Spectral Sequences and Filtrations

A.3.1 Filtrations

Let there be given an object A in some abelian category A. A decreasing,
respectively increasing, filtration F •A, F•A, is a family of subobjects of A
with · · · ⇢ F p+1A ⇢ F pA ⇢ F p�1A ⇢ · · · , respectively · · · ⇢ Fp�1A ⇢
FpA ⇢ Fp+1A ⇢ · · · . The associated graded (of a decreasing filtration) is
defined by

GrF A =
M

p

Grp

F
A, Grp

F
A = F pA/F p+1A.

In case of an increasing filtration W we write

GrW A =
M

p

GrW

p
A, GrW

p
A = WpA/Wp�1A.

We say that a morphism f : (A, F •) ! (B, F •) between two filtered objects
in A is a a filtered morphism if for all p 2 Z we have f(F pA) ⇢ F pB.
It induces morphism Grp

F
(f) : Grp

F
A ! Grp

F
B between the gradeds. Such a

morphism f is strict if the natural map Coim(f)! Im(f) is an isomorphism
of filtered complexes.
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Example. If A is a category of modules, strictness means:

F pA \ Im(f) = f(F pA) ⇢ F pB. (A–26)

Let K• be a complex in A, A decreasing filtration of K• is a family of subcom-
plexes F pK• such that · · · ⇢ F p+1K• ⇢ F pK• ⇢ F p�1K• ⇢ · · · . Likewise
for an increasing filtration. Such a filtration is called a biregular filtration
if it is finite on every Km.

Examples A.34. 1) The trivial filtration � is the decreasing filtration, ob-
tained by placing 0 in degrees < p while keeping the Km in all other degrees:

��p = {0! 0 · · ·! 0! Kp ! Kp+1 ! · · ·}

The p-graded part is the complex with Kp in degree p and zero elsewhere:

Grp

�
K• = Kp[�p].

2) The canonical filtration ⌧ is the increasing filtration obtained from the
truncation (A–5):

⌧pK
• = {· · ·! Kp�1 ! Ker(d)! 0! 0! · · ·}.

Its p-graded part is the complex 0 ! Kp�1/ Ker d ! Ker(d) ! 0, quasi-
isomorphic to the complex HpK• concentrated in degree p, i.e.

Gr⌧

p
K•

qis

⇠��!Hp(K•)[�p]. (A–27)

We say that f : (K•, F •)! (L•, F •) is a morphism of filtered complexes,
if it is a morphism of complexes preserving the filtration, i.e. f(F pK•) ⇢
F pL•. It induces a morphism of complexes

GrF f : GrF K• ! GrF L•

between the associated gradeds. We speak of a filtered quasi-isomorphism
if this is a quasi-isomorphism. Note that a filtered quasi-isomorphism in gen-
eral need not be a quasi-isomorphism, but for a biregular filtration this is
always the case. Let us now consider the cohomology H⇤(K•). If (A, F ) is
any filtered object in A, then by [Del71, Lemme 1.1.9] there is a canonical
way to put a filtration on any subquotient of A. Since cohomology groups
are subquotients (see (A–3)), given a filtered complex (K•, F •), the filtra-
tion induced by F on Kp yields a canonical filtration on Hp(K•). It is called
the filtration on H⇤(K•) induced by F •. We want to compare it with the
cohomology H⇤(Grp

F
K•) of the associated gradeds. One easily shows:

Lemma-Definition A.35 ([Del71, Lemme 1.1.11]). If the di↵erentials of
a filtered complex (K•, F •) are strict, then

Hp(Grq

F
K•) ' Grq

F
Hp(K•).

We say that (K•, F •) is strict, or that the F -filtration is strict.
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If we have bi-filtered complexes equipped with a decreasing filtration F •

and an increasing filtration W•, the filtration induced by F • on the Wk induces
one on GrW and one can form the induced bigraded GrF GrW . A morphism
respecting the two filtrations is called a bi-filtered quasi-isomorphism if
the induced bi-graded is a quasi-isomorphism.

We recall (Example A.5.1) that the (bi-)filtered objects of a given abelian
category A in general only form the objects of an additive category FA. In
this category the filtered quasi-isomorphisms form a multiplicative system
[Hart69, Prop. 4.2 p.35]. This makes it possible to define the derived filtered
category as follows.

Definition A.36. Let A be an abelian category.

1) The derived filtered category D+FA has as its objects the bounded
below filtered complexes in A and its morphisms are the right fractions

(K•, F •)
qis

⇠ ��
s

• a�! (L•, F •)

where s is a filtered quasi-isomorphism and a a (homotopy class of) a filtered
morphism. Two such right fractions are equivalent if a diagram as (A–13)
exists where all the arrows respect the filtration.
2) Let F •, resp. W• be a decreasing resp. increasing filtration. The derived
bi-filtered category D+FWA has as its objects the bounded below bi-
filtered complexes in A and its morphisms are the right fractions

(K•, F •, W•)
qis

⇠ ��
s

• a�! (L•, F •, W•)

where s is a bi-filtered quasi-isomorphism and a is a (homotopy class of)
a bi-filtered morphism. Two such right fractions are equal if a diagram as
(A–13) exists where all the arrows respect both filtrations.

Next we treat the derived functors in the derived (bi)-filtered category. Start
with an object A of A equipped with a finite filtration F and T : A ! B a
left-exact functor. Since T is left-exact, the objects TF pA are subobjects of
TA and so we have a filtered object (TA, TF ) in B. If GrF A is T -acyclic,
also the F pA are T -acyclic since they are successive extensions of T -acyclic
objects. Similarly, if we have two filtrations F and W such that GrF GrW A
are T -acyclic, the objects F pWqA are T -acyclic. The same considerations hold
for complexes of objects in A equipped with a biregular filtration.

Definition A.37. A filtered T -acyclic resolution of a biregularly filtered
complex (K•, F ) consists of a biregularly filtered complex (L•, F ) and a fil-
tered quasi-isomorphism i : (K•, F ) ! (L•, F ) such that the Grp

F
L• are all

T -acyclic.

For such a resolution, the filtered complex (TL•, TF ) has the property that
the Grp

F
Lq are also T -acyclic, yielding a T -acyclic resolution of the complex
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Grp

F
K•. Also, since the F pLq are T -acyclic, the following definition makes

sense:
RT (K•, F ) := (TL•, TFL•).

In case of biregularly bi-filtered complexes (K•, F, W ), one has to choose
a bi-filtered quasi-isomorphism of the given complex onto a biregularly bi-
filtered complex (L•, F, W ) such that all the Grp

F
GrW

m
Ln are T -acyclic and

one puts
RT (K•, F, W ) := (TL•, TFL•, TWL•).

A.3.2 Spectral Sequences and Exact Couples

Fix an abelian category A.

Definition A.38. A spectral sequence starting at Ea consists of the fol-
lowing data.

1) A family {Ep,q

r
}, p, q 2 Z, r 2 Z, r � a of objects in A;

2) morphisms, the di↵erentials

dr : Ep,q

r
! Ep+r,q�r+1

r

such that dr
�dr = 0;

3) an isomorphism

Ep,q

r+1
' H(Ep�r,q+r�1

r

dr��! Ep,q

r

dr��! Ep+r,q�r+1

r
).

It should be clear what is meant by a morphism of spectral complexes.

An exact couple is a pair (D,E) of objects in A together with an exact
triangle

D
i����! D

E
S

S
So ◆

◆
◆/

k j (A–28)

of morphisms such that each each vertex of the triangle exactness holds. The
map d = j�k : E ! E satisfies d�d = 0. Replacing D by D1 = i(D), E by
E1 = H(d : E ! E) we get a new exact couple; i, j and k get replaced by
the maps i1, j1 respectively k1 defined by i1(i(x)) = i(x), j1(i(x)) = j(x),
respectively k1[y] = k(y), [y] 2 E1 represented by y 2 Ker(d). Putting d1 =
j1�k1 : E1 ! E1, we continue in this way and we get the exact couple Dr, Er

with maps ir, jr, kr.
Suppose next that D and E are bigraded, that i has degree (�1, 1), j

degree (0, 0) and k degree (1, 0), then one finds that ir, kr each have the same
bidegrees for all r, while jr has bidegree (r,�r), forcing dr = jr�1

�kr�1, r � 1
to have bidegree (r, 1 � r). Instead of starting at E = E0, one can likewise
start at any degree a � 0, provided j has bidegree (a,�a). We have [Weib,
5.9]:
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Lemma A.39. An exact couple (D,E) of bigraded objects in A (A–28) where
i, j, k have bidegrees (�1, 1), (a,�a), respectively (1, 0) defines a spectral se-
quence starting with E = Ea+1. Morphisms between such bigraded exact cou-
ples induce morphisms of spectral sequences.

A.3.3 Filtrations Induce Spectral Sequences

Let us start with a complex K• in an abelian category equipped with a bireg-
ular decreasing filtration. The spectral sequence associated to such a filtration
is defined by

Zp,q

r
= Ker

�
d : F pKp+q ! Kp+q+1/(F p+rKp+q+1)

�

Bp,q

r
= F p+1Kp+q + d(F p�r+1Kp+q�1)

Ep,q

r
= Zp,q

r
/(Bp,q

r
\ Zp,q

r
).

This makes also sense for r = 1. The fact that the filtration is biregular
implies that, for p and q fixed, from a certain index r on we have

Zp,q

r
= Zp,q

r+1
= · · · = Zp,q

1
:= Ker(d : F pKp+q ! Kp+q+1)

Bp,q

r
= Bp,q

r+1
= · · · = Bp,q

1
:= F p+1Kp+q + dKp+q�1

and so the Ep,q

r
= Ep,q

1
from a certain index r on. For the first terms of the

spectral sequence we have

Ep,q

0
= Grp

F
(Kp+q)

Ep,q

1
= Hp+q(Grp

F
(K•))

�
(A–29)

An easy calculation shows:

Lemma A.40. The di↵erential in K• induces a homomorphism d1 : Ep,q

1
!

Ep+1,q

1
which can be identified with the connecting homomorphism

Hp+q(Grp

F
K•)! Hp+q+1(Grp+1

F
K•)

of the long exact sequence associated to

0! Grp+1

F
! F p/F p+2 ! Grp

F
! 0.

More generally, the di↵erential of the complex K• induces homomorphisms

dr : Ep,q

r
! Ep+r,q�r+1

r

which are the di↵erentials of the spectral sequence. A short calculation indeed
shows that Er+1 is the cohomology of the resulting complex so that the Er

form a spectral sequence. In fact it comes from an exact couple as follows.

Proposition A.41. Consider the long exact sequence in cohomology for the
sequence

0! F p+1K• ! F pK• ! Grp

F
K• ! 0
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in which we set Dp,q = Hp+q(F pK•) and Ep,q = Hp+q(Grp

F
K•):

· · ·! Dp+1,q�1 i�! Dp,q
j

�! Ep,q k�! Dp+1,q

1
! . . . .

Then (D,E) is a bigraded exact couple with d1 = j�k of bidegree (1, 0) and
the associated spectral sequence is the same as the spectral sequence for the
filtration F on K•.

Next, a computation shows that

Ep,q

1
= Grp

F
Hp+q(K•),

where F is the filtration induced on cohomology:

F p(Hn(K•)) = Im(Hn(F p(K•))
H

n
(i)

����! Hn(K•)),
with i : F p(K•) ,! K• the inclusion.

One summarizes this by saying that the spectral sequence converges to
the filtered cohomology of the complex or that the spectral sequence
abuts to Hp+q(K•) or that Hp+q(K•) is the abutment of the spectral
sequence, and one writes

Ep,q

r
=) Hp+q(K•).

If for all (p, q) one has Ep,q

r
= Ep,q

1
, we say that the spectral sequence

degenerates at r. Moreover, the spectral sequence degenerates at Er if and
only if the di↵erentials ds vanish for all s � r.

Suppose that we have a finite first quadrant spectral sequence in the sense
that the only non-zero terms Ep,q

1
occur when 0  p  N and 0  q  M .

We want to explain how certain edge-homomorphisms can be defined.
At the left edge (0, q) there are no in-coming arrows and so

E0,q

2
= Ker{d1 : E0,q

1
! E1,q

1
} ⇢ E0,q

1

and similarly for the higher groups E0,q

k
. So, since in this case E0,q

1
is a graded

quotient of all of Hq(K•) we get the first edge-homomorphism

eq : Hq(K•)⇣ E0,q

1
⇢ E0,q

1
= Hq(Gr0

F
K•). (A–30)

Similarly, looking at the right hand edge (N, q), we obtain a surjection EN,q

1
⇣

EN,q

1
, and since the latter is the smallest graded quotient, it is in fact a

subspace of HN (K•). This yields the second edge-homomorphism:

fq : Hq(GrN

F
K•) = EN,q

1
⇣ EN,q

1
⇢ Hq(K•). (A–31)

Lemma A.42. Let (L•, F •) be a biregularly filtered complex. Then the follow-
ing are equivalent.
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1) The F -filtration is strict (Lemma-Definition A.35).
2) For all m, k, the sequence

0! Hk(FmL•)! Hk(L•)! Hk(L•/FmL•)! 0

is exact.
3) The spectral sequence for (L•, F •) degenerates at E1.

Proof. Strictness is equivalent to the injectivity of the maps Hk(FmL•) !
Hk(L•), which is equivalent to 2). in view of the long exact sequence in co-
homology associated to

0! FmL• ! L• ! L•/FmL• ! 0.

On the other hand, strictness of d implies that the natural morphisms

Ep,q

1��
{x 2 F pKp+q | dx = 0}

[F p+1 + dKp+q�1] \ F pKp+q
,! {x 2 F pKp+q | dx 2 F p+1Kp+q+1}

[F p+1 + dKp+q�1] \ F pKp+q��
{x 2 F pKp+q | dx 2 F p+1Kp+q+1}

[F p+1Kp+q + d(F pKp+q�1)] \ F pKp+q
! {x 2 F pKp+q | dx 2 F p+1Kp+q+1}

[F p+1 + dKp+q�1] \ F pKp+q��
Ep,q

1

are isomorphisms and so the spectral sequence degenerates at E1. Conversely,
if the spectral sequence degenerates at E1, the maps d can be shown to be
strict (see [Del71, Proposition 1.3.2]). ut

The following result summarizes the e↵ect of morphisms between com-
plexes on spectral sequences. We omit the easy proofs which make use of the
recursive nature of a spectral sequence.

Lemma A.43. If f : K• ! L• is a filtered homomorphism between complexes
equipped with biregular filtrations, there are induced homomorphisms

Ep,q

r
(f) : Ep,q

r
(K•)! Ep,q

r
(L•)

and if for some s the map Ep,q

s
(f) is an isomorphism for all p and q, then

Ep,q

r
(f) is an isomorphism for r � s and all p and q as well, and the spectral

sequences have the same abutment.
If f is a filtered quasi-isomorphism, for r � 1 the maps Ep,q

r
(f) are iso-

morphisms.

Finally we want to introduce the two spectral sequences of a double
complex
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Definition A.44. Let {K••, d0, d00} be a double complex, i.e.

– d0 : Kp,q ! Kp+1,q, d0�d0 = 0,
– d00 : Kp,q ! Kp,q+1, d00�d00 = 0,
– d0�d00 + d00�d0 = 0.

The associated simple complex is given by

s(K)n =
L

p+q=n
Kp,q

d = d0 + d00.

Remark A.45. One sometimes uses the convention d0�d00 = d00�d0. This calls
for replacing d00 by (�1)pd00 on Kp,q so that the total derivative becomes
d = d0 + (�1)pd00 on Kp,q. The alternation of signs is necessary in order to
have d�d = 0. An instance where this happens is the Godement resolution
(§ B.2.1).

A special case of a biregularly filtered complex arises for a first quadrant
double complex, i. e. Kp,q = 0 whenever p < 0 or q < 0. In fact, in this setting
the following two filtrations on s(K) are biregular

0F p =
M

r�p

Kr,s (horizontal filtration)

00F q =
M

s�q

F r,s. (vertical filtration)

and these induce then filtrations 0F and 00F on the associated simple complex.
The associated spectral sequences are denoted by 0Ep,q

r
and 00Ep,q

r
. Writing out

the first two terms using (A–29) gives:

0Ep,q

1
= Hq(Kp,•, d00) 00Ep,q

1
= Hq(K•,p, d0)

0Ep,q

2
= Hp(Hq(K••, d00), d0) 00Ep,q

2
= Hp(Hq(K•,•, d0), d00)

9
=

; (A–32)

A.3.4 Derived Functors and Spectral Sequences

We start with two abelian categories A and B having enough injectives and
a left exact functor T : A ! B. A crucial rôle is played by the two spectral
sequences for derived functors:

Lemma-Definition A.46. There are two spectral sequences for derived
functors given by

0Epq

1
= RqT (Kp) =) Rp+qT (K•)

00Epq

2
= RpT (Hq(K•)) =) Rp+qT (K•)
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Proof. Choose an injective resolution for each Kp, say Ip,0 ! Ip,1 ! · · · .
By the remarks made in Example A.23 the derivatives dp : Kp ! Kp+1 can
be extended to a map between complexes dp : Ip,• ! Ip+1,• (unique up to
homotopy) and we can use the homotopy to arrange for dp+1�dp = 0 so that
we get a double complex Ip,q. A calculation then shows that the associated
simple complex is quasi-isomorphic to K•. Now apply T and consider two
spectral sequences for the double complex T (I••) from § A.3.3. Writing this
out in this case gives precisely the two spectral sequences above. ut

Corollary A.47. Let K• be a resolution of K. Then there is a canonical
identification

RpT (K) = RpT (K•).

If moreover K• is a T -acyclic resolution of K then is a canonical identification

Hp(TK•) = RpT (K•).

Proof. If K• is any resolution of K, the second spectral sequence degenerates
at E2 since the E2-term consists only of the terms 00En,0

2
= RnT (H0(K•)) =

RnT (K). If moreover Kp is T -acyclic for all p, the first spectral sequence
degenerates at 0Ep,0

2
= Hp(TK•) and hence there is a canonical identification

Hp(TK•) = RpT (K•).

Example A.48. Recall (A–19) that we defined hypercohomology as the derived
global section functor. The two spectral sequences for this functor read

Ep,q

1
= Hp(X,Kq) =) H

p+q(X,K•) (A–33)
Ep,q

2
= H

p(X, Hq(K•)) =) H
p+q(X,K•). (A–34)

Spectral sequences for the derived functors can be obtained directly by
using the canonical and trivial filtrations on K•:

Lemma A.49. 1) The first spectral sequence for the derived functor of T
comes from the trivial filtration, i.e

0Er(TK•) = Er(T (K•,�)).

2) The second spectral sequence comes from the canonical filtration up to a
shift:

00E2p+q,�p

r+1
(TK•) = Ep,q

r
(T (K•, ⌧)).

Proof. For the trivial filtration we have

Ep,q

1
(T (K•,�)) = RqT (Kp) =) Rp+qT (K•),

which is just the first spectral sequence in hypercohomology.
The canonical filtration is an increasing filtration and so we have to change

p by �p to obtain a decreasing filtration. When we do this, the p-th graded
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complex is a complex quasi-isomorphic to a complex having zeroes everywhere
except in degree �p, where the �p-th cohomology H�p(K•) is located. Since
the derivatives dr are induced by d, it follows that

Ep,q

1
T (K•, ⌧)) = R2p+qT (H�p(K•)) =) Rp+qT (K•),

which is indeed the second spectral sequence up to renumbering Ep,q

r
7!

E2p+q,�p

r+1
. ut

Remark A.50. Deligne [Del71, 1.3] explains the renumbering from the point of
view of filtrations as follows. Starting from a given filtered complex (K•, F •),
one introduces the backshifted filtered complex (K•, (Dec F )•) by

(Dec F )pKn = {x 2 F p+nKn | dx 2 F p+n+1Kn+1}.

The right hand side is Zp+n,�p

1
and by d it is mapped to Zp+n+1,�p

1
and so

one obtains a filtered complex.
As an example, if S is the simplest non-trivial filtration with Gri

S
K = 0

for i 6= 0, its backshifted filtered complex is the canonical decreasing filtration
Dec(S)pK = ⌧�pK.

To compare the associated spectral sequence with the spectral sequence of
the original filtered complex, observe that the group Zp+1+n,�p�1

1
is contained

in F p+1+nKn ⇢ Bp+n,�p

1
⇢ Zp+n,�p

1
and so there are natural morphisms

Ep,n�p

0
(Dec(F )) = Zp+n,�p

1
/Zp+1+n,�p�1

1
! Zp+n,�p

1
/Bp+n,�p

1
= Ep+n,�p

1
(F ).

One verifies that these form morphisms of graded complexes that are isomor-
phisms in cohomology and then inductively give isomorphisms

Ep,n�p

r
(K,Dec(F )) ⇠�! Ep+n,�p

r+1
(K, F ).

So, if Ip,• is an injective resolution of Kp, we have 00E2p+q,�p

r+1
(TK•) =

Epq

r
(s(I•,•),Dec(00F )).
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Algebraic and Di↵erential Topology

B.1 Singular (Co)homology and Borel-Moore Homology

We review the basic definitions and properties of singular (co)-homology referring
to [Greenb], [Span] and [Hatch] for the details.

B.1.1 Basic Definitions and Tools

Let R be a ring and X a topological space. A singular q-simplex is a con-
tinuous map �q ! X. The free R-module Sq(X;R) generated by the singu-
lar q-simplices fits in a chain-complex S•(X;R) whose q-th homology group
Hq(X;R) by definition is the q-th singular homology group. The module
Sq(X;R) :=HomR(Sq(X;R), R) fits dually in a cochain complex whose q-th
cohomology Hq(X;R) is the q-th singular cohomology group. The homol-
ogy functors are covariant on the category of topological spaces with continu-
ous maps, while cohomology behaves contravariantly. For any continuous map
f : X ! Y , the induced maps are denoted f⇤ : Hq(X;R) ! Hq(Y ;R) and
f⇤ : Hq(Y ;R) ! Hq(X;R). It follows that the (co)homology modules are
topological invariants. Even more is true: homotopic maps induce homotopic
maps in the associated singular (co)chain complexes and hence induce the
same maps in (co)homology. It follows that spaces with the same homotopy
type have the same (co)homology.

Let us next introduce the relative (co)homology groups for the pair (X, A)
where A ⇢ X. Note that S•(A;R) is a subcomplex of S•(X;R) and dually
S•(A;R) is a quotient of S•(X;R). Set

S•(X,A;R) := S•(X;R)/S•(A;R)
S•(X,A;R) := Ker(S•(X;R) ! S•(A;R)).

Then Hq(X,A;R) is the q-the homology of the former chain complex and
Hq(X,A;R) is the cohomology of the latter cochain complex. There are the
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usual long exact sequences associated to the two defining sequences. For in-
stance, we have the exact sequence in cohomology for the pair (X,A):

· · ·Hq(X,A;R) ! Hq(X;R) ! Hq(A;R) �
q

��! Hq+1(X,A;R) · · · . (B–1)

To introduce compactly supported cohomology we need to explain the phrase
f 2 Sq(X;R) has support in A, where A is closed in X. It means that f
vanishes on the chains from the submodule Sq(X � A;R) ⇢ S(X;R). Those
cochains form the R-module Sq(X, X�A;R). Varying A over all compact sets,
we get a direct system and the limit is the module of compactly supported
q-cochains

Sq

c
(X;R) := lim

!
Sq(X, X �K), K compact

with cohomology groups H•
c
(X;R). Dually we have

SBM

q
(X;R) := lim

 
Sq(X,X �K), K compact,

the Borel-Moore q-chains with homology groups HBM

•
(X;R). For a pair

(X,A) one has the notion of compactly supported relative q-cochains yielding
the group Hq

c
(X,A;R), and, dually HBM

q
(X, A;R). Cohomology with com-

pact support and Borel-Moore homology are topological invariants, but not
homotopy invariants.
Remark B.1. 1) One has Hq

c
(X;R) = lim

!
Hq(X, X � K;R) and dually

HBM

q
(X;R) = lim

 
Hq(X, X �K;R).

2) Borel-Moore homology was originally defined using sheaves [Bor-M], and
only for locally compact spaces of finite dimension (see § 13.1.1), as follows:

HBM

q
(X;R) = H

�q(X, Ve
DR

X
).

3) Recall that for the one-point compactification X⇤ = X [ {1} the open
neighbourhoods of 1 are the complements of the compact sets in X to
which the extra point 1 has been added. For locally compact Hausdor↵ X
one may define Borel-Moore homology as

HBM

q
(X;R) = Hq(X⇤,1;R). (B–2)

4) If X is a paracompact space whose one-point compactification X⇤ is a
finite CW-complex one can show that the three definitions are the same.
For details see [Fult, Example 19.1.1]. This applies to complex algebraic
varieties. In the more general situation where X is embeddable as a closed
subset of R

N the preceding definitions can be replaced by one in terms of
singular cohomology :

HBM

q
(X;R) = HN�q(RN , RN �X;R). (B–3)

This applies to complex analytic spaces, even if they are not algebraic or
compatifyiable in the sense that they embed in a compact analytic space
with complement a finite number of irreducible proper analytic subvarieties.
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By definition, for proper maps f : X ! Y the inverse image of a compact
subset L of Y is compact. By remark B.1.1) it then follows that there are
induced maps

f⇤ : HBM

q
(X;R) ! HBM

q
(Y ;R)

so that Borel-Moore homology is a covariant functor from locally compact
spaces equipped with proper maps to abelian groups.

By the excision theorem stated below (Theorem B.2), if U ⇢ X is open and
K ⇢ U compact, the inclusion (U, U�K) ,! (X,X�K) induces isomorphisms
in homology. The canonical projection maps

lim
 

Hq(X,X�K : R) ! Hq(X, X�K;R) (limit over all compacts K ⇢ X)

followed by the inverses Hq(X, X �K;R) ! Hq(U, U �K;R) of the excision
isomorphisms induce contravariant restrictions in the limit, this time taken
over compacts K ⇢ U :

j⇤ : HBM

q
(X;R) ! HBM

q
(U ;R).

Under suitable hypotheses on X, for instance if X is embeddable as a closed
subset of R

N , using definition (B–3), one shows [Fult, Example 19.1.1] that for
a closed immersion i : Z ,! X and j : U = X � Z ,! X the complementary
inclusion one has an exact sequence

· · ·! HBM

q+1
(U ;R) ! HBM

q
(Z;R)

j⇤��! HBM

q
(X;R)

i
⇤

��! HBM

q
(U ;R) ! . . . .

(B–4)

For a point P , the only homology is in degree 0, generated by the singular
0-cycle [P ] :={�0 ! P}. Likewise for the cohomology of a point. The homo-
topy property then implies that for any path connected space X, H0(X;R)
is generated by the class of [P ], where P 2 X is any point, and similarly for
H0(X;R). Introducing the constant map

aX : X ! P

this motivates the introduction of reduced (co)homology

H̃q(X;R) = Ker((aX)⇤ : Hq(X;R) ! Hq(P ;R))
H̃q(X;R) = Coker((aX)⇤ : Hq(P ;R) ! Hq(X;R)).

It is customary to drop the coe�cient ring R from the notation if R = Z

and so
Hq(X,A) = Hq(X,A; Z) Hq(X,A) = Hq(X, A; Z),

HBM

q
(X) = HBM

q
(X; Z) Hq

c
(X) = Hq

c
(X; Z).

The universal coe�cient theorem [Greenb, 29.12] gives a recipe to determine
(co)-homology with coe�cients in any commutative ring R (with unit) from
the knowledge of the groups Hq(X), q = 0, 1, . . . . We shall only need the
following special case.
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Theorem (Universal Coefficient Theorem). When R is a field, there
is a natural isomorphism

Hq(X)⌦R
⇠�! Hq(X;R). (B–5)

To calculate relative cohomology one frequently uses the following prop-
erty.

Theorem B.2 (Excision theorem). Let (X, A) be a pair and let Z ⇢ X
such that its closure is contained in the interior of A, then the excision map
(X � Z, A� Z) ⇢ (X,Z) induces isomorphisms in (co)homology.

We also need the variant given in [Span, Thm. 4.8.9]:

Theorem B.3 (Strong excision theorem). Let (X,Z) be a compact
Hausdor↵ pair, Y Hausdor↵ and T closed in Y . Suppose that Z is a strong de-
formation retract of a closed neighbourhood G of Z in X (i.e. with j : Z ,! X
the inclusion, there is a retraction r : G ! Z such that j�r is homotopic to
the identity by a homotopy that point-wise fixes Z). If, moreover there exists
a continuous map f : (X,Z) ! (Y, T ) restricting to a homeomorphism from
X � Z to Y � T , then f⇤ : Hq(Y, T ;R) ⇠�! Hq(X, Z;R) (and similarly in
homology).

For calculations the Mayer-Vietoris sequence is useful. First we need a defini-
tion.

Definition B.4. Two subsets X1, X2 of a topological space form an excisive
couple if excision induces an isomorphism H⇤(X1[X2, X2;R) ⇠�! H⇤(X1, X1\
X2;R) (or, equivalently H⇤(X1 [X2, X1;R) ⇠�! H⇤(X2, X1 \X2;R)).

Examples B.5. 1) If X is the union of the interiors of X1 and X2, the couple
(X1, X2) is excisive.
2) Two subcomplexes of a CW-complex form an excisive couple. We apply
this to subvarieties X1, X2 inside a complex variety X. This follows from
the (non-trivial) fact that X can be triangulated in such a way that X1 and
X2 are subcomplexes. See e.g. [Hir74] and the references given therein.

Theorem B.6 (Mayer-Vietoris sequence). For an excisive couple X1, X2

let ik : Xk ! X1[X2 and jk : X1\X2 ! Xk be the inclusion maps, k = 1, 2.
Then there is a long exact sequence

· · ·!Hq(X1 [X2;R)
(i
⇤
1
,i
⇤
2
)

����!Hq(X1;R)�Hq(X2;R)
j
⇤
1
�j

⇤
2����! Hq(X1 \X2;R)

! Hq+1(X1 [X2;R)! · · · .
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B.1.2 Pairings and Products

The tautological pairing

Sq(X, A;R)⇥ Sq(X, A;R) ! R

is compatible with boundary and coboundary and defines the Kronecker
pairing

Hq(X,A;R) ⇥Hq(X, A;R) ! R
Hq

c
(X,A;R) ⇥HBM

q
(X, A;R) ! R

(B–6)

This pairing will be denoted by h , i, so that

h[f ], [c]i = f(c) f a q-cocycle, c a q-cycle,

and the square brackets denote the corresponding classes in (co)-homology. It
induces the Kronecker homomorphisms

Hq(X,A;R) ! HomR(Hq(X,A;R),
Hq

c
(X,A;R) ! HomR(HBM

q
(X,A); R)

which are isomorphisms if R is a field.
Recalling the definition (A–2) of the tensor product of complexes, we in-

troduce the Alexander-Whitney homomorphism

Sn(X ⇥ Y ;R) A�! [S(X;R)⌦ S(Y ;R)]n
(�, ⌧) 7! (front p-face of �)⇥ (back (n� p)-face of ⌧)

�
(B–7)

which can be used to define a product on S•(X;R) as follows. Let � : X ,!
X ⇥X be the diagonal. The cup-product is defined as the composition

[
: [S•(X;R)⌦ S•(X;R)]

t
A��! S•(X ⇥X;R)

S
•
(�)

����! S•(X;R).

Obviously, we have the relation

@(f [ g) = @f [ g + (�1)pf [ @g

which shows that cup-product induces a ring structure on the cohomology

H⇤(X;R) =
M

q

Hq(X;R)

with unit 1 2 H0(X;R) given by the constant cochain x 7! 1, x 2 X. The
cup-product can be shown to be (graded) commutative:

a [ b = (�1)pqb [ a, a 2 Hp(X;R), b 2 Hq(X;R).

If f : X ! Y is continuous, the induced homomorphism f⇤ : H⇤(Y ;R) !
H⇤(X;R) preserves cup-products.
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If we evaluate cup-product on � ⌦ ⌧ , where � is any cochain, but ⌧ a
cochain with compact support, the result is a cochain with compact support
so that we also get induced cup-products

Hp(X;R)⌦Hq

c
(X;R) ! Hp+q

c
(X;R). (B–8)

Dual to cup-products, we have cap-products

Sp+q(X;R)⇥ Sp(X;R) \��!Sq(X;R)
g(c \ f) = (f [ g)(c), f 2 Sp(X;R), g 2 Sq(X;R), c 2 Sp+q(X;R)

inducing
\

: Hp+q(X;R)⌦Hp(X;R) ! Hq(X;R) (B–9)
\

: HBM

p+q
(X;R)⌦Hp(X;R) ! HBM

q
(X;R). (B–10)

We close this subsection with a recipe to calculate the cohomology of a prod-
uct:

Theorem B.7 (Künneth formula). For R a field there is a natural iso-
morphism

Hn(X ⇥ Y ;R) ⇠=
nM

p=0

Hp(X;R)⌦Hn�p(Y ;R).

B.2 Sheaf Cohomology

We refer to [Gode] and [Iver] for more details for proofs of the results in this
section.

B.2.1 The Godement Resolution and Cohomology

Let F be a sheaf of abelian groups on a topological space X. A “discontinuous
section” over an open subset U of X consists of a collection of germs {ax 2
Fx | x 2 U}. The set of all such sections is denoted C0

Gdm
F(U). Varying U

we obtain a presheaf C0

Gdm
F which is in fact a sheaf. By definition it comes

equipped with an injective homomorphism F ,! C0

Gdm
F . Following [Gode,

II.4.3] one inductively defines

Z0F = F
ZpF := Cp�1

Gdm
F/Zp�1F

Cp

Gdm
F := C0

Gdm

⇣
Cp�1

Gdm
F/Zp�1F

⌘
.

The sheaves Cp

Gdm
F are flabby, i.e. any section over an open set extends to

the entire space X. The natural maps d : Cp

Gdm
F ! Zp+1F ,! Cp+1

Gdm
F are

the coboundary maps of a resolution
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F ! C0

Gdm
(F) d�! C1

Gdm
(F) d�! · · ·

of the sheaf F , by definition the Godement resolution of F . We define:

Hp(X,F) :=Hp(� (X, C•
Gdm

F)).

From the definition of the Godement resolution it follows that any morphism
of sheaves f : F ! G induces a morphism of complexes C•

Gdm
(f) between the

respective Godement resolutions. Moreover, for two such morphisms f and g,
we have:

C•
Gdm

(f�g) = C•
Gdm

(f)� C•
Gdm

(g).

If f : F ! G is a morphism of sheaves on X, the induced morphism C•
Gdm

(f)
induce maps Hq(f) : Hq(X,F) ! Hq(X,G); these behave functorially, i.e.
sheaf cohomology is a contra-variant functor on sheaves of abelian groups on
X.

Secondly, an exact sequence of sheaves of R-modules 0 ! F i�! G
j

�! H! 0
induces a short exact sequence on the level of their Godement resolutions and
hence a long exact sequence

. . . Hq(X,F)
H

q
(i)

����! Hq(X,G)
H

q
(j)

����! Hq(X,H) �! Hq+1(X,F) . . . (B–11)

Next, we pass to a complex of sheaves F• on X which is bounded below.
For every Fp take its Godement resolution C•

Gdm
Fp. The di↵erentials dp :

Fp ! Fp+1 induce maps of complexes dp : C•
Gdm

Fp ! C•
Gdm

Fp+1 and by
functoriality, dp+1�dp = 0 so that we have a double complex C•

Gdm
F•. Since

the Godement sheaves are flabby, the associated simple complex s(C•
Gdm

F•)
(a finite sum since Fq = 0 for q ⌧ 0) gives a flabby resolution of F•. Its
complex of global sections is called the derived complex

R� (X,F•) :=� (X, s[C•
Gdm

F•]). (B–12)

This complex computes the hypercohomology (see e.g. [Gode, Example II,
7.2.1] where the case of a single sheaf is explained):

Lemma B.8. Let X be a topological space and let F• be a bounded below
complex of sheaves on X. There is a canonical identification

H
p(X,F•) :=Rp� (F•) = Hp(R� (F•)) = Hp(� (X, s[C•

Gdm
F•])).

We finish this section with the relation of the Godement resolution to tensor
products. Start with two sheaves F and G on X. There are natural morphisms
Zp(F) ⌦ Zq(G) ! Zp+q(F ⌦ G) and Cp

Gdm
(F) ⌦ Cq

Gdm
(G) ! Cp+q

Gdm
(F ⌦ G)

which can be constructed inductively with respect to the total degree p + q.
The Godement resolutions are bounded below complexes and one can form
the tensor product of two such complexes. The morphisms we just constructed
are compatible with di↵erentials in an obvious way and hence we get a natural
map of complexes
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C•
Gdm

(F)⌦ C•
Gdm

(G) ! C•
Gdm

(F ⌦ G).

This also works for complexes, whence a natural map of complexes

R� (F•)⌦R� (G•) ! R� (F• ⌦ G•)]. (B–13)

B.2.2 Cohomology and Supports

The support of a section s of a sheaf F of abelian groups on any topological
space X is the (closed) set of points x 2 X such that the germ sx of the
section at x does not vanish.

Definition B.9. A family of supports is a collection � of closed subsets of
X such that

a) whenever two members belong to �, their union belongs to �;
b) any closed subset of a member of � belongs to �.

If moreover all members of � are paracompact, and we have

c) any member of � admits a (paracompact) neighbourhood belonging
to �,

we say that � is paracompactifying. The group of (global) sections of a
sheaf F of abelian groups, having support in a family of supports � is denoted
��(X,F).

We recall that X is paracompact if every open covering of X admits a locally
finite refinement.

For a family of supports (not necessarily paracompactifying) one can in-
troduce cohomology with supports generalizing what we did before without
supports (Prop. B.8):

H
p

�
(X,F•) = Rp��(F•) = Hp(��(X, s[C•

Gdm
(F•)])).

Examples B.10. 1) If we take the family of all closed subsets of X we get
back the usual cohomology groups;
2) If X is Hausdor↵, compact subsets of X are closed and give a family of
supports. So for X Hausdor↵ we may define

H
p

c
(X,F•) :=Hp(�c(X, s[C•

Gdm
(F•)])).

In general, the compacts do not form a paracompactifying family, but they
do if in addition X is paracompact and locally compact.

An exact sequence of complexes of sheaves 0 ! F• i�! G•
j

�! H• ! 0 gives rise
to a corresponding long exact sequence

· · ·Hq

�
(X,F•)

H
q
(i)

����! H
q

�
(X,G•)

H
q
(j)

����! H
q

�
(X,H•) ! H

q+1

�
(X,F•) · · · (B–14)
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provided � is paracompactifying. It generalizes (B–11).
We apply this to one important example. Let Z ⇢ X be a closed subset

of a Hausdor↵ space, and let U = X � Z the open complement and F any
sheaf on X. Then the restriction F|U extended by zero over Z is a subsheaf
of F with quotient sheaf F|Z. Taking for � the set of compact subsets of
X, we remarked that it is paracompactifying if X is paracompact and locally
compact. The sequence (B–14) in this case gives:

· · ·Hq

c
(U,F|U) ! Hq

c
(X,F) ! Hq

c
(Z,F|Z) ! Hq+1

c
(U,F|U) ! · · · . (B–15)

Singular cohomology with R-coe�cients may well be di↵erent from the
corresponding cohomology in the constant sheaf. We need to make certain
assumptions on the topology of X.

Proposition B.11. Let X be a Hausdor↵ space such that every open subset
is paracompact. Assume moreover that X is locally contractible. Then there
are natural isomorphisms

Hq(X;R) ⇠�! Hq(X, R
X

), q = 0, 1, . . . .

If, moreover X is locally compact, there are natural isomorphisms

Hq

c
(X;R) ⇠�! Hq

c
(X, R

X
).

Sketch of Proof. We first sketch the argument for ordinary cohomology. By
[Gode, Example II.3.91] paracompactness for X and U ⇢ X implies that the
sheaf cSq associated to the presheaf Sq defined by U 7! Sq(U ;R) is flabby.
Moreover, since X is locally contractible, cSq is a resolution of the constant
sheaf R

X
. Hence, by [Gode, Exemple II, 7.2.1] the complex cS•(X) of its global

sections computes the cohomology of R
X

.
Since the above presheaf is not a sheaf, in general cSq(X) 6= Sq(X;R).

Instead we have cSq(X) = Sq(X;R)/Sq

0
(X;R) where Sq

0
(X;R) are those

cochains f which are zero on all elements of a suitable open cover of X
(which may depend on f). Then S•

0
(X;R) is a subcomplex of the singular

complex and it su�ces to show that this complex is acyclic. By definition we
have an open cover U = {Uj} of X such that f |Uj = 0. The R-submodule
SU

q
(X;R) ⇢ Sq(X;R) consisting of chains on singular simplices with im-

age in one of the Uj consists of so-called U-small q-chains; dually we have
Sq

U(X;R) = HomR(SU
q
(X;R), R), the U-small q-cochains, a natural quotient

of Sq(X;R) whose kernel Kq contains our f . Note that the Kq form a cochain
complex K• fitting in a short exact sequence

0 ! K• ! S•(X;R) ⇡�! S•

U(X;R) ! 0.

A classical argument [Warn, § 5.32] shows that ⇡ induces an isomorphism in
cohomology and hence Hq(K•) = 0. So taking a cocycle f 2 Sq

0
(X;R) it

becomes a coboundary in K• and so a fortiori a coboundary in S•
0
(X;R).
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If X is Hausdor↵, by Example B.10.2 compactly supported cohomology
of R

X
can be computed as the hypercohomology of the functor �c. In partic-

ular, we may use the same flabby resolution cSq of R
X

as before. Since X is
moreover locally compact and paracompact, the compacts form a paracom-
pactifying family and we have long exact sequences associated to cohomology
with compact support. The rest of the argument is essentially as before, using
instead compactly supported cohomology. ut

The class of topological spaces we are working with in this book have all
of the above properties and a few more which will be needed later on. We
collect the desired properties in the following provisional

Definition B.12. A topological space X is called perfect if it has the fol-
lowing properties:

a) X is Hausdor↵;
b) X is locally compact;
c) X has a countable basis for the topology;
d) X is locally contractible.

Examples include topological manifolds, but also complex analytic spaces as
we shall see later (Prop. C.9).

It is classical [Warn, Lemma 1.9] that a perfect space is in particular para-
compact. Moreover, every open subset is paracompact. So, for a perfect space
we can apply Prop. B.11:

Corollary B.13. For a perfect space X (e.g. a manifold or an analytic space)
singular and compactly supported singular cohomology (with values in R) co-
incides with cohomology of the constant sheaf R

X
, respectively compactly sup-

ported cohomology of R
X

.

If X is Hausdor↵ and locally compact, its one-point compactification
X⇤ = X [ {1} is compact and Hausdor↵. For such a space we have
Hk

c
(X;R) = Hk(X⇤,1;R) = H̃k(X⇤), which gives an alternative defini-

tion of compactly supported cohomology. In fact, we need a bit more. Replace
X⇤ by any compact perfect space X and replace 1 by any closed subset Z.
Compare now the long exact sequence for the pair (X, Z) (B–1) with the long
exact sequence (B–15) for the constant sheaf R

X
. We find, making use of

Cor. B.13:

Corollary B.14. Let X be a perfect compact topological space, and let Z ⇢ X
be closed. Put U = X � Z. Then the natural restriction map induces isomor-
phisms Hk(X,Z;R) ⇠�! Hk

c
(U ;R). This applies in particular to manifolds and

to complex analytic spaces.

B.2.3 Čech Cohomology

Let U = {Ui | i 2 I} be an open covering of a topological space X. The nerve
N(U) of the covering is the set of the non-empty intersections in the covering.
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Inclusions induce maps between the elements of the nerve. Its q-simplices
correspond to non-empty intersections of exactly (q + 1) sets Uij , ij 2 I,
j = 0, . . . , q of the covering. We denote this simplex by � = {i0, . . . , iq}, and
its support |�| is by definition Ui0

\ · · · \ Uiq . A q-Čech-cochain is a function
f which associates to each q-simplex � an element f(�) of F(|�|). These form
the group

Cq(U,F) :=
Y

� a q-simplex of U

F(|�|).

To make a complex out of it, we consider the j-th face of �, i. e. the (q � 1)-
simplex �j = {i0, . . . , ij�1, ij+1, . . . , iq}, and we take the alternating sum of

the various restriction maps F(|�|)
⇢

i

��! F(|�i|):

d : Cq(U,F) ! Cq+1(U,F)

df(�) =
q+1X

i=0

(�1)i⇢i
�
f(�i)

�
.

The resulting complex is the Čech complex. The open coverings of X form
a directed set under refinement and the direct limit of its cohomology groups
is the Čech cohomology:

Ȟq(X,F) := lim
!

Hq(U,F),

where the direct limit is taken over the set of coverings, partially ordered under
the refinement relation. This cohomology computes Hq(X,F) on paracompact
spaces:

Theorem B.15. Suppose that X is paracompact. Then the canonical homo-
morphisms

Ȟq(X,F) ! Hq(X,F)

are isomorphisms.

Sometimes there is no need to pass to the limit, making calculations sim-
pler:

Theorem B.16 (Leray’s theorem). Let U = {Ui}i2I be an open cover
of X which is F-acyclic in the sense that for any non-empty intersection
U = Ui1

\ Ui2
· · · \ Uik of the cover we have

Hp(U,F) = 0 for p � 1. (B–16)

Then the natural homomorphisms

Hp(U,F) ! Ȟp(X,F)

are isomorphisms.
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Examples B.17. 1) For a complex manifold X one can find a cover simulta-
neously acyclic for all OX -modules F . Indeed, any open set which is biholo-
morphic to a ball and intersections of such sets are examples of Stein man-
ifolds and for these Cartan’s famous ”Théorème B” [Cart] (or [Gr-R77] for
a modern proof) says that the cohomology groups Hk(U,F) vanish for
k � 1.
2) Any di↵erentiable manifold can be covered by geodesic balls. Intersections
of such balls are geodesically convex sets and hence contractible. Such covers
are therefore acyclic with respect to locally constant sheaves.

B.2.4 De Rham Theorems

The two spectral sequences for the global section functor (A–33) and (A–34)
yield:

Theorem B.18 (Abstract De Rham theorem). Let X be a topological
space and let F be a sheaf with a � -acyclic resolution F• = {F0 ! F1 ! · · ·},
i.e. Hk(X,Fj) = 0 for k � 1, j � 0. We have canonical identifications

Hk(X,F) = H
k(X,F•) = Hk [� (X,F•)] .

This formal result enters indeed crucially in the proof of the classical De Rham
Theorem which states that for a di↵erentiable manifold X integration induces
a canonical isomorphism

Hp

DR
(X) = Hp

DR
(X, E•

X
)
⇠=�! Hp(X; R).

That there exists an isomorphism can be seen as follows. For a di↵erentiable
manifold, the Poincaré lemma states that the De Rham complex

0 ! R
X

i�! E0

X

d
0

��! E1

X

d
1

��! · · ·

is exact. In other words, viewing R
X

as a complex totally concentrated in
degree 0, the map i : R

X
! E•

X
is a quasi-isomorphism. The sheaves Ek

X

are not injective in general but a partition of unity argument implies that
these sheaves are still � -acyclic. In fact, each of these sheaves is a so called
fine sheaf which means that the identity isomorphism is a sum of homo-
morphisms each of which is zero outside the open sets of a given cover of X.
Then by Theorem B.18 the cohomology of the complex of global sections com-
putes Hk(X; R) and hence a functorial isomorphism Hp

DR
(X)

⇠=�! Hp(X; R).
On the other hand, integration over smooth singular simplices defines a ho-
momorphism ! 7!

�
� 7!

R
�
!
 
. By Stokes’ theorem this homomorphism is a

homomorphism of complexes. Since singular cohomology on smooth manifolds
is known to be computable with cochains on smooth simplices, we have there-
for a well defined homomorphism Hp

DR
(X) ! Hp(X; R). That this is exactly

the preceding canonical isomorphism lies deeper. See [Warn] where one finds
a proof of the following version of



B.2 Sheaf Cohomology 417

De Rham’s Theorem. Wedge-product induces a graded-commutative al-
gebra structure on H⇤

DR
(X) =

L
p
Hp

DR
(X) and with the algebra structure

on H⇤(X; R) induced by cup-product, the integration map induces a graded
algebra isomorphism

H⇤
DR

(X)
⇠=�! H⇤(X; R). (B–17)

Next, for a complex manifold the Dolbeault complex

0 ! ⌦p

X
! Ep,0

X

@�! Ep,1

X

@�! Ep,2

X

@�! · · · ,

is a resolution of ⌦p

X
(by the Dolbeault lemma) by fine sheaves Ep,q

X
and so by

Theorem B.18, for Hp,q

@
(X) :=Hq

DR
(Ep,•) we have a canonical isomorphism

Hp,q

@
(X) ⇠�! Hq(X,⌦p

X
) (Dolbault’s theorem). (B–18)

Finally, as a last application we have the holomorphic De Rham complex

0 ! C
X
! OX

@�! ⌦1

X

@�! · · ·

and the holomorphic Poincaré lemma says that this is an exact complex. Hence
the inclusions C

X
! ⌦•

X
and ⌦•

X
! E•

X
(C) are quasi-isomorphisms. Again,

by Theorem B.18 we get an isomorphism

H
n(X,⌦•

X
) ⇠= Hn(X, C).

Remark B.19. We can also approach hypercohomology in the Čech setting. So
let X be a paracompact space and F• a complex of sheaves on X. Let U an
open covering of X. Then the Čech groups Cp(U,Fq) form a double complex
whose associated simple complex is denoted sC•(U,F•) and we have

H
p(X,F•) = lim

!
Hp(sC•(U,F•)),

where the limit is over all open coverings U.

B.2.5 Direct and Inverse Images

Let f : X ! Y be a continuous map, F a sheaf on X. The sheaf associated
to the presheaf

U 7! F(f�1U)

defines the direct image sheaf f⇤F on Y . The resulting functor f⇤ is left
exact. It sends flabby sheaves to flabby sheaves and extends to complexes of
sheaves. Its right derived functors, the higher direct images are denoted

Rf⇤ : D+(sheaves of R-modules on X) ! D+(sheaves of R-modules on Y ),
Rqf⇤ : D+(sheaves of R-modules on X) ! {sheaves of R-modules on Y }.
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Since direct images of flabby sheaves are flabby (this follows immediately from
the definitions, see also [Gode, Théorème 3.1.1]) the Godement resolution is
also f⇤-acyclic and we have:

Rf⇤(F•) = f⇤s[C•Gdm
F•] (B–19)

Rqf⇤(F•) = Hq (f⇤s[C•Gdm
F•]) . (B–20)

From this it follows that Rqf⇤F• is the sheaf associated to the presheaf

U 7! H
q(f�1U,F•).

As to functoriality, we have

R(f�g)⇤F•
qis

⇠��!Rf⇤(Rg⇤F•).

If F• carries a biregular filtration F , the Godement resolution s[C•
Gdm

F•]
is filtered by the subcomplexes s[C•

Gdm
F pF•], which are f⇤-acyclic. So the

filtered Godement resolution can be used to define the higher direct images
in the filtered setting

Rf⇤(F•, FF•) = (f⇤s[C•Gdm
F•], f⇤s[C•Gdm

FF•])

and likewise in the bi-filtered setting.
Using the Godement resolution, one sees that there are natural identifica-

tions
H

p(X,F•) = H
p(Y,Rf⇤F•). (B–21)

Using Remark A.50 one concludes:

Lemma-Definition B.20. The spectral sequence for the double complex
� (Y, s[f⇤C•Gdm

F•]) with the vertical filtration is the Leray spectral sequence
Ep,q

r
(f,F•) satisfying

Ep,q

2
(f,F•) = H

p(X, Rqf⇤F•) =) H
p+q(X,F•).

If G is a sheaf on Y one can define the inverse image sheaf f�1G on X
as follows. View a sheaf over a topological space X as a topological covering
space over X. The covering space defining f�1G is the fibre product X ⇥Y G.
Alternatively,

f�1F(U) = lim
!

F(U), U open in Y, U � f(V ). (B–22)

This defines an exact functor f�1 on sheaves over Y . Suppose that F is any
sheaf on X. Then, one directly verifies that f⇤Hom(f�1G,F) = Hom(G, f⇤F).
We say that f�1 is left adjoint to f⇤ (or f⇤ is right adjoint to f�1).
Applying the preceding formula to F = f�1G and the identity morphism, we
obtain the adjunction morphism [Iver, II.4]:
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f ] : G 7! f⇤f
�1G. (B–23)

For complexes of sheaves F• and G• on X, respectively Y , we have to replace
the functors by their derived versions so that we get Rf⇤RHom(f�1G•,F•) =
RHom(G•, Rf⇤F•). The adjunction morphism then becomes

f ] : G• ! Rf⇤f
�1G• (B–24)

which induces the natural maps

f⇤ : H
p(Y,G•) �! H

p(Y,Rf⇤f
�1G•) = H

p(X, f�1G•) (B–25)

In particular, since for the constant sheaf R
Y

we have f�1R
Y

= R
X

, we get
back the induced maps for cohomology

f⇤ : Hp(Y ;R) �! Hp(X;R). (B–26)

For cohomology with supports, functoriality is more complicated except
for maps that are universally closed. For locally compact spaces universally
closed maps are exactly the proper maps (i.e. the inverse image of a compact
set is compact). So, for f : X ! Y is a proper map between locally compact
Hausdor↵ spaces, with � the family of compact subsets of Y , the set f�1�
consists of compact subsets of X and the above discussion thus extends to
compactly supported cohomology without any change. In particular, in this
situation there is an identification as in (B–21) and a Leray spectral sequence.

In general, if f is not necessarily proper, (but still within the category of
Hausdor↵ locally compact spaces) we should replace the functor f⇤ by another
functor, as we now explain. Let V ⇢ Y open and take for � the family of closed
sets Z in f�1V such f |Z ! V is proper. Again, in view of the assumptions,
this defines a family of supports. The sheaf f!F is associated to the presheaf

V 7! ��(f�1(V ),F).

There results a left exact functor, the proper direct image functor f! going
from sheaves on X to sheaves on Y . There is a canonical injective map

0 ! f!F ! f⇤F

which is an isomorphism if f is proper. On the other end of the spectrum,
when f = aX is the constant map to a point, we have

(aX)
!
F = �c(X,F). (B–27)

Parallel to (B–21) valid for ordinary cohomology, for any continuous map
f : X ! Y between locally compact spaces, we have a canonical identification

H
q

c
(X,F•) = H

q

c
(Y,Rf!F•) (B–28)
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B.2.6 Sheaf Cohomology and Closed Subspaces

Let i : Z ,! X be a closed subset of a topological space X, and let j : U =
X � Z ,! X be the inclusion of its complement. For any sheaf F on X the
sheaf j!j�1F is just the restriction F|U extended by zero. It is a subsheaf of
F with quotient i⇤i�1F , i.e. we have a short exact sequence

0 ! j!j
�1F ! F ! i⇤i

�1F ! 0. (B–29)

This generalizes to a complex of sheaves F• on X provided we replace i⇤ by
the derived functor Ri⇤. So, if we define

H
p(X, Z;F•) := H

p(X, j!j
�1F•), (B–30)

the long exact sequence for ordinary hypercohomology gives

· · ·! H
p(X,Z;F•) ! H

p(X,F•) ! H
p(Z,F•) ! · · · . (B–31)

Comparing this sequence with the sequence (B–1) (and using Prop. B.13)
shows that definition (B–30) is compatible with the definition for relative
cohomology for the constant sheaf Z

X
.

If, instead, we use hypercohomology with compact supports, for a perfect
space X we get the hypercohomology version of (B–15):

· · ·! H
p

c
(U,F•) ! H

p

c
(X,F•) ! H

p

c
(Z,F•) ! H

p+1

c
(U,F•) ! · · · . (B–32)

Using Cor. B.14 we thus get:

Lemma B.21. Let X be perfect and compact, and let Z ⇢ X be closed. Then
there is a natural isomorphism

H
k

c
(X � Z,F•) ⇠�! H

k(X, Z;F•).

We next introduce local (hyper) cohomology groups or cohomology
groups with support in Z by defining

H
p

Z
(X,F•) :=Hp(�Z(X, s[C•

Gdm
(F•)])).

Here �Z is the functor of taking global sections with support in Z. Local
cohomology can also be described as ordinary cohomology of a complex of
sheaves on Z as follows. Consider the functor �Z defined for sheaves on X
defined by

�Z(F)(U) :=Ker (F(U) ! F(U � U \ Z)

and introduce

i!(F•) = i�1R�Z(F•) = i�1�Zs[C•
Gdm

(F•)]. (B–33)

Since � ��Z = �Z , writing out the definitions we get
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H
p

Z
(X,F•) = H

p(Z, i!F•) = H
p(X, Ri⇤i

!F•), (B–34)

where the last equation follows from (B–21). The complex Ri⇤i!F• figures in
a distinguished triangle

Ri⇤i!F• ������! F•

Rj⇤j�1F•
S

S
So ◆

◆
◆/

↵Z,X(F
•
)[1] (B–35)

In this adjunction triangle the attachment homomorphism:

↵Z,X(F•) : F•����! Rj⇤j
�1F•

is defined using (B–24). The associated long exact sequence

· · ·Hp

Z
(X,F•) ! H

p(X,F•) ! H
p(X � Z,F•) ! H

p+1

Z
(X,F•) · · ·

is functorial in the sense that if f : X ! Y is continuous and T ⇢ Y is a
closed subset such that f(X �Z) ⇢ Y � T , for any complex of sheaves G• on
Y one has a commutative diagram of exact sequences

· · ·Hp

T
(Y,G•) ! H

p(Y,G•) ! H
p(Y � T,G•) ! H

p+1

T
(Y,G•) · · ·

# # # #
· · ·Hp

Z
(X, f⇤G•) ! H

p(X, f⇤G•) ! H
p(X � Z, f⇤G•) ! H

p+1

Z
(X, f⇤G•) · · ·

Suppose now that in addition to a closed set Z ⇢ X, we have an open set
V ⇢ X as well. The excision exact sequence is the sequence induced by
restrictions

· · ·! H
p

Z�Z\V
(X,F•) ! H

p

Z
(X,F•) ! H

p

Z\V
(V,F•) ! · · · (B–36)

In case Z ⇢ V this gives the excision isomorphism

H
p

Z
(X,F•) ⇠�! H

p

Z
(V,F•).

B.2.7 Mapping Cones and Cylinders

Let us recall a few notions from topology. Details can be found in [Hu, Chapter
II]. Given a topological space X, the cylinder over X is the topological space
Cyl(X) = X ⇥ I, where I is the unit interval. The cone Cone(X) is obtained
from the cylinder by identifying X⇥{0} to a single point v, the vertex. Equiva-
lence classes of points (x, t) 2 X⇥I are denoted [(x, t)]. Cones are contractible
onto the vertex. There is a natural inclusion i : X ! Cyl(X) of X as the “top”
of the cylinder (i.e. i(x) = [(x, 0)] and an inclusion j : X ! Cone(X) of X as
the “bottom” of the cone (j(x) = [(x, 1)]). Next, if f : X ! Y is a continuous
map, the cylinder Cyl(f) over f is obtained by gluing the cylinder over X to
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Y upon identifying a bottom point (x, 1) of Cyl(X) with f(x) 2 Y . The map
i : x 7! (x, 0) identifies X as a subspace of Cyl(f). The inclusion Y ! Cyl(f)
of Y as the bottom of this cylinder is a homotopy equivalence since the cylin-
der retracts onto Y . Under this retraction the inclusion X ! Cyl(f) as the
top deforms into f : X ! Y . Similarly one defines the mapping cone over
f , Cone(f) by collapsing the top of the mapping cylinder to a single point v.
The quotient space Cyl(f)/X is canonically homeomorphic to Cone(f). Since
for any pair (X,A) with A closed, we have H⇤(X, A) = H̃⇤(X/A) the long
exact sequence associated to the pair (Cyl(f), X) therefore gives rise to the
exact sequence

! H̃q�1(X) ! H̃q(Cone(f))
j
⇤

��! H̃q(Y )
f
⇤

��! H̃q(X) ! . (B–37)

As an example, if f is the inclusion A ,! X, we find H̃q(Cone(f)) = Hq(X,A).
Let us now make the link with the algebraic cone-construction from § A.1:

Theorem B.22. Let f : X ! Y be a continuous map between two topological
spaces and let L• be a resolution of Z

Y
. Consider the adjunction map (B–24)

f ] : L• ! Rf⇤f
�1L•.

There is a natural isomorphism

H
q(Y, Cone•(f ])) = H̃q+1(Cone(f))

Proof. The exact sequence of the cone (A–12) yields

· · ·! H
q(Y,L•) ! H

q(X, f�1L•) ! H
q(Cone•(f ])) ! H

q+1(Y,L•) ! . . . .

Since L• is a resolution of Z
Y

, the complex f�1L• resolves f�1
Z

Y
= Z

X
. The

above sequence becomes

· · ·! H
q(Y ) ! H

q(X) ! H
q(Cone•(f ])) ! Hq+1(Y ) ! . . . .

Comparison with the exact sequence (B–37), shows that indeed

H
q(Y,Cone•(f ])) ' H̃q+1(Cone(f)) ut

Remark B.23. Compare this with [Weib, 1.5]. Note however that there the
convention for indexing the cone-complex is di↵erent: Weibel’s convention is
better adapted to the topological situation because the cohomology of his
cone-complex on singular chains gives the cohomology of the topological cone
without shifts. In this book we follow the convention of [Iver].

B.2.8 Duality Theorems on Manifolds

Suppose that X is an n-dimensional oriented manifold. It has an orientation
class [X] 2 HBM

n
(X). Taking cap-product (B–10) with this class yields an

isomorphism
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DBM

X
: Hn�p(X) ⇠�! HBM

p
(X)

which is Poincaré-duality for Borel-Moore homology. The classical form
of Poincaré duality is not stated using cap products involving Borel-Moore
homology. Instead, one takes a limit over cap product with classes [X]K 2
Hn(X,X �K)

⇠=�! Z induced by the orientation, where K ⇢ X is a compact
set. However, capping with the fundamental homology class class [X] in Borel-
Moore homology as in (B–9) directly gives the duality isomorphism of [Greenb,
Theorem 26.6] DX : Hq

c
(X) ! Hn�q(X). Summarizing, we have:

Theorem B.24 (Poincaré duality theorem). Let X be a connected ori-
ented n-dimensional topological manifold. The orientation induces a funda-
mental homology class [X] 2 HBM

n
(X) and isomorphisms

DX : Hq

c
(X)

\[X]

���! Hn�q(X)

DBM

X
: Hq(X)

\[X]

���! HBM

n�q
(X).

In particular we find that orientation gives a generator for Hn

c
(X), defining

the trace map
trX : Hn

c
(X) ⇠�! Z. (B–38)

It is compatible with cup-product (B–8) and Kronecker pairings (B–6) in the
sense that

tr(x [ y) = hy, DXxi, x 2 Hq

c
(X), y 2 Hn�q(X). (B–39)

One deduces

Corollary B.25. Let X be a connected n-dimensional manifold. Cup-product
pairing

Hq

c
(X)⇥Hn�q(X) ��! Z

(x, y) 7�! tr(x [ y)

is perfect in the sense that if tr(x[y) = 0 for all x 2 Hq

c
(X) then y is torsion

and similarly if tr(x [ y) = 0 for all y 2 Hn�q(X) then x is torsion.

Remark. For di↵erentiable manifolds, using the De Rham isomorphism (B–17)
translates (B–39) into

ha, DXbi =
Z

X

b ^ a, a 2 Hp

DR
(X), b 2 Hn�p

DR
(X). (B–40)

Using the duality isomorphisms, for any continuous map between oriented
manifolds X ! Y , say dimX = n. dim Y = m, we can replace the induced
homomorphism in homology f⇤ : Hk(X) ! Hk(Y ) by the associated Gysin
homomorphism

f! = D�1

Y
�f⇤�DX : Hk

c
(Y ) ! Hk+m�n

c
(X) (B–41)
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and similarly for cohomology we put f ! = DX
�f⇤�D�1

Y
. This is indeed com-

patible with the notation used elsewhere in this book, since first of all formulas
(B–26) and (XIII–11) show that f⇤, respectively f⇤ correspond to f�1 and
Rf⇤ respectively, while the commutative diagram (XIII–9) then show that f !

and f! correspond to f ! and Rf! respectively.
Using this compatibility, dualizing the projection formula as stated on

[Iver, p.390]) we get:

Lemma B.26 (Projection formula). Let f : X ! Y be a continuous
map between oriented manifolds. We have

f!(x [ f⇤y) = f!(x) [ y, x, y 2 H⇤(X).

Observing that the Poincaré-dual over any field is completely determined
by the formula (B–39) one now shows:

Proposition B.27. Let f : X ! Y be a continuous map between two compact
connected oriented manifolds of the same dimension n. Let R be a field. Then
f!f⇤ : Hn(Y ;R) ! Hn(Y ;R) is multiplication with deg(f); if this degree
does not vanish, for all q the homomorphism f⇤ : Hq(Y ;R) ! Hq(X,R) is
injective.

Proof. First observe that for all a 2 Hq(Y ;R) and b 2 Hn�q(Y ;R) we have

trY (f!f⇤(a [ b)) = hb, DY f!f⇤ai = hb, f⇤DXf⇤ai
= hf⇤b, DXf⇤ai = trX(f⇤a [ f⇤b)
= trX(f⇤(a [ b)) = deg(f) trY (a [ b).

The last equality holds by the definition of degree. Next, applying this for
a[ b mapping onto 1 2 Z under the trace map, the first assertion follows. For
the second assertion, assuming f⇤a = 0 all terms in the above formula vanish
so that trY (a[ b) = 0 for all b 2 Hn�q(X) and hence a = 0 by Cor. B.25. ut

We also have a more general version of duality, Poincaré-Lefschetz duality,
classically stated in singular cohomology. The following is a more general
variant in Borel-Moore homology (see [Fult, 19.1]):

Theorem B.28 (Poincaré-Lefschetz duality). Let X be a connected
oriented manifold and Z a closed subset. Then cap product with the orientation
class induces an isomorphism

DBM

(X,Z)
: Hq

Z
(X) = Hq(X,X � Z)

⇠=�! HBM

n�q
(Z).

B.2.9 Orientations and Fundamental Classes

Let X be any n-dimensional di↵erentiable manifold and let Y ⇢ X be an
m-dimensional connected oriented submanifold. Using Poincaré-Lefschetz du-
ality, let us introduce:
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⌧(Y ) = (DBM

X
)�1[Y ] 2 Hn�m

Y
(X) (Thom class of Y ).

Its image under restriction r : Hn�m

Y
(X) ! Hn�m(X) is denoted

cl(Y )= r⌧(Y )2Hn�m(X) (the fundamental cohomology class of Y in X).

With i : Y ,! X the inclusion inducing the lower horizontal arrow, there is a
commutative diagram

Hn�m

Y
(X) r�! Hn�m(X)??yD
BM

(X,Y )

??yDX

HBM

m
(Y )

i⇤��! HBM

m
(X)

which shows that cl(Y ) is Poincaré-dual to i⇤[Y ] 2 HBM

m
(X). We use the

following incarnation of the Thom isomorphism:

Theorem B.29 (Thom’s isomorphism theorem). Taking cup-product
with the Thom class induces an isomorphism for all q

Hq(Y ) ⇠�! Hq+c

Y
(X), c = n�m

Proof. The usual Thom isomorphism ([Span, Chapt 5 §7 Theorem 10]) for
the total space N of the normal bundle of Y in X states that cup-product
with the Euler class for the normal bundle of Y in X induces isomorphisms

Hq(Y ) ⇠�! Hq+c(N, N � {zero section}).

The right hand side is isomorphic to Hq+c(X, X � Y ) by the tubular neigh-
bourhood Theorem (there is a neighbourhood T ⇢ X of Y such that (T, Y )
is di↵eomorphic to (N, {zero section}), see [Lang, Ch. 4.5] ) and the excision
isomorphism applied to the inclusion (T, T �Y ) ,! (X, X�Y ). Secondly, one
checks easily that the Thom class corresponds to the Euler class of the nor-
mal bundle under the isomorphism Hc

Y
(X) = Hc(X,X � Y ) ⇠�! Hc(N, N �

{zero section}). ut

Next, suppose that X (and hence Y ) are compact. Using the Gysin mor-
phisms

i! : Hq(Y ) ! Hq+c(X), c = dim X � dim Y

one has
cl(Y ) = i!(1) 2 Hc(X)

since DY (1) = [Y ].

Proposition B.30. 1) For all ↵ 2 Hq(Y ) one has the relation

i⇤i!(↵) = i⇤ cl(Y ) [ ↵.
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2) For all � 2 Hp(X) one has the relation

i!i
⇤(�) = cl(Y ) [ �.

Proof. 1) One proves this formula after applying the Thom isomorphism and
making use of the formula a [ i⇤r(b) = r(a) [ b valid for a 2 Hp(X) and
b 2 Hq

Z
(X). For details see [Iver, proof of Formula 2.7 on p. 339].

2) This is an easy exercise in the definitions. Alternatively, one may apply the
projection formula (Prop. B.26) to the first formula. ut

Remark B.31. There is still another way to introduce fundamental classes by
means of currents. This method has the advantage that it treats homology
and cohomology on a uniform basis. A current of degree q on a di↵erentiable
manifold X is a q-form with distributional coe�cients. These form a topologi-
cal vector space Dq(X). Alternatively, we can consider currents of degree q as
elements in the dual of the vector space of compactly supported (n� q)-forms
on X, the duality being given by integration. The transpose of the d-operator
on forms thus defines a d-operator on currents. The sheaf associated to the
presheaf

U 7! Dq(U) = �c(U, En�q)_

is the sheaf Dq

X
of degree q-currents. These sheaves are fine. The d-operators

define a complex D•

X
which is a cohomological resolution of the constant sheaf

R
X

. So the cohomology of X can also be computed by means of currents, and
we have canonical isomorphisms

Hq

DR
(X) = Hq(� (D•

X
)) ⇠= Hq(X, R).

Let i : Y ,! X be the embedding of a compact m-dimensional oriented
submanifold Y ⇢ X into X (possibly with boundary @Y ). The integration
current [Y ] is the degree m-current defined by its values on m-forms ↵ on
X:

h[Y ],↵i =
Z

Y

↵.

Stokes’ formula shows that d[Y ] = (�1)m�1[@Y ] and so this defines a closed
current if Y has no boundary. We denote the resulting cohomology class by
cl(Y ). This is indeed the Poincaré dual of the orientation class in homology,
since Z

Y

↵ = h↵, i⇤[Y ]i =
Z

X

↵ ^ cl(Y ) ↵ 2 Hn�m(X, R).

This approach can be used to define integration currents for compact subva-
rieties Y of a complex manifold X. We just integrate compactly supported
forms over the smooth part of Y . This is possible, since the volume of Y in
any coordinate polydisc is bounded: if dim Y = d choose local coordinates
such that projection onto any set I of d coordinates is finite of degree nI onto
the image YI ; the volume of Y is then bounded by

P
I
nIVolYI . What is less
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trivial is the fact that this current is closed. See for this [Lel]. It should be
clear that the resulting cohomology class is dual to the orientation class in
Borel-Moore homology introduced before.

We shall indicate how to construct the fundamental class for an irreducible
analytic space X. The complement U in X of the singular locus Xsing is an 2n-
dimensional connected manifold with a natural orientation coming from the
complex structure and hence one has an orientation class [U ] which generates
HBM

2n
(U). The long exact sequence

· · ·! HBM

2n
Xsing ! HBM

2n
X ! HBM

2n
U ! HBM

2n�1
Xsing · · ·

together with induction on the dimension, shows that HBM

2n
(X) is cyclic and

generated by a unique class [X] which maps to [U ].
More generally, if Y is an irreducible m-dimensional subvariety of X, one

defines a fundamental class clX(Y ) by

clX(Y ) = i⇤[Y ] 2 HBM

2m
(X),

where i : Y ,! X is the inclusion. In addition, if X is smooth, Poincaré duality
for Borel-Moore homology provides fundamental cohomology classes

⌧(Y ) 2 H2c

Y
(X), c = n�m = codim(Y ).

One can construct this class also directly from the corresponding class
⌧(Yreg) 2 H2m

Yreg
(X) with support on the regular locus Yreg of Y as follows.

One first notes that for any subvariety Z of codimension c in X the groups
Hr

Z
(X) vanish for r < 2c, This can be shown inductively using the excision

sequence for cohomology with support, starting with Z smooth and the Thom
isomorphism. Then the excision sequence

H2c

Ysing
(X) ! H2c

Y
(X) ! H2c

Yreg
(X) ! H2c+1

Ysing
(X)

shows that in fact restriction induces an isomorphism between H2c

Y
(X) and

H2c

Yreg
(X).

B.3 Local Systems and Their Cohomology

Local systems are defined on any topological space. One can define (co)homology
with values in a local system. This generalizes the concept of (co)homology
with constant coe�cients and is a special case of sheaf cohomology. On man-
ifolds there is also a version of Poincaré duality for cohomology with values
in a locally constant system.
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B.3.1 Local Systems and Locally Constant Sheaves

Let R be some commutative ring with a unit.

Definition B.32. Let X be a topological space. A local system of R-
modules on X consists of a collection Vx of R-modules, one for each point
x 2 X, together with a collection of isomorphisms ⇢([�]) : Vx

⇠�! Vy, one for
each homotopy class [�] of paths from x to y. Furthermore, one requires that
this assignment is functorial in the sense that ⇢[ex] = idVx for the class of the
constant path ex at x and that ⇢[�⇤�0] = ⇢[�0]�⇢[�] for two classes of composable
paths. Here the product of two composable paths � and �0 is denoted � ⇤ �0,
which means first traverse � and then �0, both with double speed.

Usually we denote a local system with fibres Vx by V. The constant
system with fibre V on X is denoted V

X
. If (X, o) is a pointed path-connected

topological space, the collection {[⇢([�]) | � a loop at o} defines the associated
monodromy representation

⇢ : ⇡1(X, o) ! GL(Vo).

Suppose now that X is locally 1-connected so that it admits a covering {Ui}i2I

by 1-connected open subsets. Then for any two points x, y 2 Ui, there is a
unique isomorphism fx,y : Vx

⇠�! Vy defined by any path connecting x and
y within Ui so that there is a canonical trivialization of the local system V

above Ui, say
�i : V|Ui

⇠�! V
Ui

.

Comparing the two trivialisations in the overlaps we see that the resulting fibre
bundle has constant transition functions with values in Aut(V ). Alternatively,
one may view the trivialisations as a way to describe V as a locally constant
sheaf, the sheaf of local sections of the associated fibre bundle. Here we recall

Definition B.33. A locally constant sheaf F on X is a sheaf with the
property that for some open cover {Ui}i2I of X, the restrictions ⇢Ui,x :
F(Ui) ! Fx, x 2 Ui are isomorphisms.

Conversely, let F be a locally constant sheaf of R-modules on a path
connected and locally 1-connected space X. There is a locally constant system
V associated to it as follows. For Vx one takes the stalk of F at x and for
any path � : I ! X, one defines ⇢([�]) by subdividing first I so that each
segment [a, b] maps to one of the Ui and then one takes the composition of the
isomorphisms ⇢Ui,b

�⇢�1

Ui,a
, where ⇢Ui,x are the restrictions. This is independent

of the subdivision and depends only on the homotopy class of the path. This
gives indeed a bijection:

Lemma B.34. On a path connected and locally 1-connected space X there is
a one to one correspondence between locally constant sheaves of R-modules
and local systems of R-modules on X.
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As a consequence, a locally constant sheaf V becomes constant on any
simply connected space. In particular, it pulls back to a constant system on
the universal cover (X̃, õ) of a pointed connected and locally path connected
space (X, o). The fundamental group acts on the universal cover from the
left by translation and the monodromy representation ⇢ gives back the local
system on X by taking the quotient under the product action

V ⇠= V⇢ = (X̃ ⇥ V )/⇡1(X, o)
g(x̃, v) = (x̃g�1, ⇢(g)v), 8g 2 ⇡1(X, o).

B.3.2 Homology and Cohomology

To define homology and cohomology of a local system V in the singular
framework, we slightly modify the definition of singular chains and their (co)-
boundary maps as follows. We consider finite formal sums

P
v�� over singular

p-simplices � and v 2 V�(e0)
. Associate to � the path �� from the zeroth vertex

�(e0) to the first vertex �(e1). The boundary then is defined by

�p(
X

v�) =
X

⇢(��)(v) +
pX

q=1

(�1)qv�q.

The coboundary is defined similarly. Taking homology, respectively cohomol-
ogy of the resulting complexes defines Hp(X, V), respectively Hp(X, V). One
can likewise define (co)-homology of a pair and cohomology with compact
support. See [Span, Exercise I, J of Chap. 5] for details.

Note that a perfect space (Def. B.12) is in particular locally 1-connected
so local systems and locally constant sheaves are the same on a connected
such space. One can modify the proof of Prop. B.11 to obtain the following
analogue of Cor. B.13.

Lemma B.35. For a connected perfect space X the group Hp(X, V) coincides
with the p-th cohomology of the (locally constant) sheaf defined by V. A similar
assertion holds for cohomology with compact support.

If V and W are two local systems, their tensor product is likewise a local
system and the classical definition of cup-product can be extended to obtain
a product

Hp(X, V)⌦Hq

c
(X, W) ! Hp+q

c
(X, V⌦W).

In particular, when W = V
_ is the dual local system, evaluation maps the

right hand side to Hp+q(X) and we get
[

: Hp(X, V)⌦Hq

c
(X, V_) ! Hp+q

c
(X).

There is also a weak generalization of Poincaré duality in the sense that
Cor. B.25 generalizes:
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Theorem B.36 (Poincaré duality for local systems). For an ori-
ented connected manifold X, the pairing

Hp

c
(X, V)⌦Hn�p(X, V_) [�! Hn

c
(X) tr�! Z

is non-degenerate.

This can either be proved directly by imitating the classical proof (see e.g.
([Grif-Ha]), or it can be viewed as a special case of Verdier-duality (13.7).

B.3.3 Local Systems and Flat Connections

Let E be any (real or complex) vector bundle on a smooth manifold M . Let
Ep

X
(E) be the bundle of smooth E-valued p-forms on X.

Definition B.37. 1. A connection on E is an operator

r : E0

X
(E) ! E1

X
(E)

which satisfies the Leibniz rule: r(f · s) = df · s + frs for any smooth
function f on X and any section s of E.

2. For any vector field v on X the covariant derivative rv in the direc-
tion of v is the section of E defined by the rule

rv(s) := v(rs).

Consider first a trivial vector bundle U⇥R
m on an open set U of R

n. A dif-
ferentiable section is nothing but a row vector x of functions. Any connection
r on this bundle can be given by

rx = dx� x!, ! 2 E1 (gl(n, R)) . (B–42)

This formula is valid in over any trivializing coordinate chart U for E, i.e.
after the choice of an m-frame for E|U . The resulting matrix-valued 1-form !
in (B–42) is then called the connection matrix in U of the connection.

Example B.38. If the transitions functions are locally constant, one can take
r = d, i.e., all connection matrices can be taken to be zero.

Using the Leibniz rule r(↵ · e) = d↵ · e + (�1)deg ↵↵ ^re, we can extend
the connection to an operator

r : Ep

X
(E) ! Ep+1

X
(E)

on p-forms with values in E.

Lemma-Definition B.39. – The curvature operator of the connection r
is defined by

Fr = r�r : E0

X
(E) ! E2

X
(E).

This operator can be checked to be linear over the di↵erentiable functions
and thus can be viewed as an End(E)-valued 2-form on X.
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– The connection is flat if its curvature is zero.

Example B.40. Any locally constant vector bundle, or equivalently, any local
system (see Sect. B.3) admits a flat connection, since, as we saw before, in a
trivializing coordinate chart d defines a global connection for which trivially
F = d�d = 0.

Let us now consider parallel transport along a smooth path � : I ! X,
say with �(0) = p and �(1) = q. Assume that the path is contained in a
trivializing chart and that we have chosen a frame. The pull back along � of
a section of E can then be given by a vector valued function x(t) on I. The
connection form pulls back to a form Adt, with A 2 gl(m). The section is
parallel along � if dx = x�⇤! which translates into the di↵erential equation

dx
dt

= xA.

By the theory of ordinary di↵erential equations this equation always has a
unique solution if the initial value x(0) = v is fixed. An explicit solution
x(1) = w using Picard iteration can be found by converting the preceding
equation into an integral equation:

x(s) = x(0) +
Z

s

0

x(t)A(t)dt.

With as a zeroth approximate solution the initial value x0(t) = v, we define
successively

xn(s) = v +
Z

s

0

xn�1(t)A(t)dt.

Thus, we find

x1(s) = v +
R

s

0
vA(t1)dt1

x2(s) = v +
R

s

0
x1(t2)A(t2)dt2

= v +
R

s

0
(v +

R
t2

0
vA(t1)dt1)A(t2)dt2

= v
⇣
1 +

R
0t1s

A(t1)dt1 +
R
0t1t2s

A(t1)A(t2)dt1dt2
⌘

The limit of this process yields the true solution, namely,

x1(s) = v

 
1 +

Z

�1(s)

A(t1)dt1 +
Z

�2(s)

A(t1)A(t2)dt1dt2 + · · ·
!

,

where
�n(s) = {0  t1  · · ·  tn  s}

The expression on the right is the value of an iterated integral:

Lemma-Definition B.41. Let X be a di↵erentiable manifold.
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– Given an ordered set of r matrix valued one-forms !1,!2, . . . ,!r, the as-
sociated iterated integral is the function on paths � : I ! X given by
the formula

Z

�

!1!2 · · ·!r =
Z
· · ·
Z

0t1···tr

f1(t1)f2(t2) · · · fr(tr)dt1 · · · dtr,

where we have written
�⇤!i = fi(t)dt.

– Let E be a trivial rank m vector bundle with connection r and connection
matrix !. Parallel transport along a piecewise di↵erentiable path � is given
by the transport map

w = v T (�),

where T (�) is the following (convergent) series of iterated integrals evalu-
ated on �

T (�) = 1 +
Z

�

! +
Z

�

!! +
Z

�

!!! + · · ·

If we want that the result of parallel transport from p to q does not change
under homotopies fixing the end points, an integrability condition is needed
which follows from the curvature being zero.

Lemma B.42. For a flat connection the result of parallel transport between
two points p and q depends only on the homotopy class of the path (relative
to p and q).

For a proof see [Don-Kr, Th. 2.2.1].

Corollary B.43. Given a flat connection in a di↵erentiable vector bundle
E over a di↵erentiable manifold X, there is a local trivialization of E by a
parallel frame. Hence, the existence of a flat connection in E implies that E
is a locally constant vector bundle.



C

Stratified Spaces and Singularities

C.1 Stratified Spaces

Large classes of analytic spaces, including those that underlie algebraic vari-
eties, admit a so-called Whitney-stratification. This is a decomposition into
smooth submanifolds of smaller and smaller dimension having the property
that the topology in normal directions to strata is locally constant. As such the
stratification gives the space the structure of a pseudomanifold, a very special
topological space of finite dimension. The existence of Whitney-stratifications
has a great many important topological consequences which are reviewed be-
low.

C.1.1 Pseudomanifolds

We give the following inductive definition of a topological stratified space.

Definition C.1. Let X be a paracompact Hausdor↵ space. A filtration

X = Xn � Xn�1 � · · · � X1 � X0

by closed subspaces is called an n-dimensional topological stratification
if

1) The Xk � Xk�1 are k-dimensional manifolds (or empty); its connected
components are called the (open) strata;
2) local normal triviality: for each point x of a connected component S of
Xk � Xk�1 there exists an (n � k � 1)-dimensional topological stratified
compact Hausdor↵ space Lx = Ln�k�1 � Ln�k�2 � · · · � L0, the link of
x in Xk, and an an open neighbourhood U ⇢ X together with a homeo-
morphism

h : U
⇠�! {open ball Bk centered at x in S}⇥ open cone on Lx,

which preserves stratifications in the sense that h maps U \Xk+j homeo-
morphically to B ⇥ open cone on Lj , j = 0, . . . , n� k � 1.
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Any topological space admitting a topological stratification with the extra
conditions that Xn�1 = Xn�2 and X � Xn�2 dense in X is called an n-
dimensional pseudomanifold and a pseudomanifold endowed with a stratifi-
cation is called a stratified pseudomanifold. An orientable pseudomanifold
by definition admits an orientation, i.e. an orientation for the n-dimensional
manifold X �Xn�2.

A pseudomanifold is topological normal if every point has a fundamental
system of neighbourhoods which do not get disconnected by leaving out the
non-manifold locus.

Remark C.2. 1) A stratification of a topological space is a locally finite
partition into locally closed non-empty subsets, the strata; each stratum
having the property that its closure is a union of strata. So the open strata
given by the filtration occurring in the definition of a topological stratifica-
tion do give a stratification in this sense.
2) Any complex analytic space of pure dimension n is an orientable (2n)-
dimensional pseudomanifold. In fact, these have special stratifications called
Whitney stratifications. We treat these in detail in § C.1.2. The strata
are analytic subspaces and hence are even-dimensional. If X is normal, X
is also topological normal.

C.1.2 Whitney Stratifications

A good reference for this subsection is the book [G-M88] where further background

and proofs can be found

Definition C.3. Let X be a complex space of pure dimension n. A complex
analytic stratification consists of a filtration

X = Xn � Xn�1 � · · · � X1 � X0 � X�1 = ?

by closed analytic subspaces such that the strata, i. e. the connected compo-
nents of Xk �Xk�1 are k-dimensional complex manifolds.

The Whitney regularity conditions control the way two strata meet. So
let x 2 X and view the germ (X,x) as being embedded in (CN , 0) so that
the tangent spaces along strata near x can be viewed as points in appropriate
Grassmannians, and similarly for the linear joins of a finite set of points. When
speaking of convergence we always mean convergence inside these Grassman-
nians. We can now explain the regularity conditions:

Definition C.4. 1) A stratification of X with strata S, S0, . . . satisfies the
first regularity condition at x 2 S ⇢ S0 if for all sequences yn ! x,
yn 2 S0 for which the corresponding sequence of tangent spaces converges
to T , we have TxS ⇢ T . The second regularity condition is satisfied
if in addition for all xn 2 S converging to x for which the linear joins
hxn, yni converge to a line, say limn!1hxn, yni = L, we have L ⇢ T . If
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both conditions are satisfied for all points in the intersection of a stratum
and the closure of another stratum, the stratification is called a Whitney
stratification.
2) We say that a morphism f : X ! Y between two complex spaces is
stratified if X and Y are Whitney stratified and every stratum of X is
mapped submersively and surjectively onto a stratum of Y .

For simplicity, we assume now that X ⇢ U , where U ⇢ C
N is a small open

ball. We use the standard metric d on C
N . For any x 2 X we let

B(x, r) :={y 2 C
N | d(x, y)  r}

be the closed ball of radius r and centre x and

S(x, r) := @B(x, r) = {y 2 C
N | d(x, y) = r}

the boundary. Let S ⇢ X be a stratum of a Whitney stratification, x 2 S.
Choose a complex submanifold N 0 ⇢ U passing through x, transverse to all
strata of X, meeting S in x and such that dim S + dim N 0 = N . Choose r so
small that S(x, ⇢) meets each stratum of X transversely for 0 < ⇢  r. Then

N(S, x) = N 0 \X \B(x, r)

is a Whitney stratified space, the normal slice through (S, x). The link
L(S, x) of the stratum is the compact Whitney stratified space

L(S, x) = N 0 \X \ S(x, r).

For r small enough the topological type of the pair (N(S, x), L(S, x)) does
not depend on r, the embedding X ,! U , and it stays constant. Because of
this we also use the notation (N(S), L(S)). Moreover, the normal slice has a
cone-like structure:

Proposition C.5. There is a stratified homeomorphism

N(S, x) ⇠�! Cone L(S, x)

which takes x to the vertex of the cone.

It follows that a Whitney stratified space is stratified in the topological
sense:

Corollary C.6. Let X2k be the union of the strata of a Whitney-stratification
of the n-dimensional complex space X having complex dimension  k. Then
X = X2n � X2n�2 � · · · � X0 is a topological (2n)-dimensional stratification
giving X the structure of an oriented (2n)-dimensional pseudomanifold.

The basic properties concerning Whitney stratifications are:



436 C Stratified Spaces and Singularities

Properties C.7. 1) Closed subvarieties of complex manifolds admit a Whit-
ney stratification. In particular, any analytic space can locally be Whitney
stratified.
2) If X can be Whitney stratified, any given analytic stratification can be
refined to a Whitney-stratification.
3) Proper morphism between complex spaces can be stratified. In particular,
compact analytic spaces can be Whitney stratified.
4) Transverse intersections of two Whitney stratified spaces become Whit-
ney stratified upon taking the intersection of strata.
5) Whitney stratified spaces are locally topologically trivial along the strata:
there is a neighbourhood T (S) of a stratum S in X such that the projection
T (S) ! S is locally trivial and each fibre is homeomorphic to the cone over
L(S). In other words, if x 2 S a stratum of complex dimension d, then x
has a neighbourhood U homeomorphic to B2d ⇥ Cone L(S). In particular
Hk(U, Q) = 0 for k 6= 0.
We need also a result about cohomology with compact support. Consider
the pair (U,U \ S) ⇠= (B2d ⇥ Cone(L(S)), B2d) = B2d ⇥ (Cone(L(S), x).
Since U � U \ S ⇠= B2d+1 ⇥ L(S), by [Bor84, Lemma V.3.8] one has

Hk

c
(U � U \ S; Q) = Hk

c
(B2d+1 ⇥ L(S); Q) = Hk�2d�1(L(S); Q).

The exact sequence of cohomology with compact supports for the pair
(U,U \ S) then shows

Hk

c
(U, Q) =

⇢
0 if k  2d + 1
Hk�2d�1(L(S); Q) if k > 2d + 1.

We treat the special case where X is a local complete intersection.

Lemma C.8. Let X be a local complete intersection of dimension n and let
x 2 S, a stratum of dimension d. Then for all su�ciently small neighbourhoods
U of x, Hk(U ; Q) = 0 unless k = 0 and Hk

c
(U ; Q) = 0 unless k = n + d, n +

d + 1, 2n.

Proof. This follows from the previous example and the fact (see [Hamm71])
that L(S), the link of a local complete intersection singularity of dimension
n � d, is (n � d � 2)-connected, and hence it has no cohomology in positive
dimensions up to dimension n� d� 2, and by duality neither in all remaining
dimensions except perhaps in dimensions n� d� 1, n� d and 2n� 2d� 1. ut

The existence of local Whitney stratifications implies:

Proposition C.9. A complex space X is perfect so that (see Corr. B.13 and
Theorem B.15) all cohomology theories give the same for X, all good equiv-
alences for local systems (Lemma B.34) apply to X. Moreover X has also a
universal cover space.
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C.2 Fibrations, and the Topology of Singularities

A fibration is a proper surjective holomorphic map f : X ! S between
connected complex manifolds with connected fibres. There is a dense open
subset U ⇢ S over which f is a submersion. The discriminant of f is the
smallest closed subvariety �(f) of S such that f is a submersion over the
complement. Smooth fibrations are topological fibrations as a consequence of:
Theorem C.10 (Ehresmann’s theorem). A smooth fibration is locally dif-
ferentiably trivial.
For an easy proof see [Mor-Ko, p. 19]). A smooth fibration over a manifold S
of dimension m is also called an smooth m-parameter family.

A fibration is locally di↵erentiably trivial over the complement of the dis-
criminant locus. We shall now consider in some more detail what happens
over a 1-dimension base near a critical value , i.e. a point in the discriminant
locus. We speak of a one-parameter degeneration.

C.2.1 The Milnor Fibration

The Milnor fibration arose classically [Mil68] as follows. Let f : (Cn+1, 0) !
(�, 0) be a holomorphic map which has rank 1 everywhere, except possibly
at points over the origin. Let �(⇢) = {t 2 C | |t| < ⇢}, the disk of radius ⇢
centred at 0 and put �⇤(⇢) = �(⇢)� {0}. Milnor has shown [Mil68] that for
0 < ⇢⌧ r small enough

f : B(r) \ f�1�⇤(⇢) ! �⇤(⇢). (C–1)

is a smooth locally trivial fibration. The fibre of this fibration, the Milnor
fibre Milf,x, has the homotopy type of a CW-complex of dimension  n.
Moreover, if 0 is an isolated singularity, it has the homotopy type of a wedge of
µx n-spheres. The number µx is called the Milnor number of the singularity
(X,x). An n-cycle supported in the Milnor fibre of course is a boundary of
a chain in B(r). Therefore any such cycle is called a vanishing cycle. A
collection of µx cycles which give a basis for Hn(Milf,x) is called a basis of
vanishing cycles.

Let f : X ! S be a one-parameter fibration. For x 2 X, t a regular value
of f near f(x), by means of the inclusion Milf,x ,! Xt any vanishing cycle
can be viewed as an n-cycle in Xt. If the induced map

Hn(Milf,x) ! Hn(Xt) (C–2)

is injective, we say that vanishing cycles survive globally.
With appropriate changes some of this discussion remains valid if (Cn+1, 0)

gets replaced by the germ of an analytic subvariety (X, x) inside a ball
(B(r), 0) ⇢ (CN , 0). Indeed, Lê has shown [Le78] that in this set-up again
for 0 < ⇢ ⌧ r small enough (C–1) is topologically locally trivial with fibre
given by

Milf,x := B(x, r) \ f�1(t), 0 < |t|⌧ r small enough. (C–3)
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C.2.2 Topology of One-parameter Degenerations

We now turn to one-parameter degenerations f : X ! �, i.e. f is proper
holomorphic map from a complex manifold X onto some small disk � and
having 0 as its only critical value. Over �⇤ = �� {0} the fibration is a fibre
bundle and hence completely described by its monodromy when we move
along a circle S1 ⇢ �. Let us now assume that x 2 f�1(0) is the only critical
point of f so that we can speak of the Milnor fibre Milf,x. We consider at the
same time the local and global situation and put

F =
⇢

Xt, t 2 S1 if f is proper,
Milf,x if f is a local Milnor fibration. (C–4)

Let ✓ be the angle on S1. Any lifting to f�1S1 of the associated vector field
@/@✓ on S1 integrates to a flow and induces

h : F
⇠�! F (the geometric monodromy of the fibration).

which is well defined up to isotopy and it induces

T :=(h⇤)�1 : Hq(F ) ! Hq(F ) (the local monodromy). (C–5)

In the local situation, since h can be realized by a homeomorphism which is
the identity near the boundary of the Milnor fibre, h� id maps Borel-Moore
cycles on the Milnor fibre to compactly supported cycles. In cohomology it
induces

var :=T � I : Hq(Milf,x) ! Hq

c
(Milf,x) (the variation) (C–6)

The topological description of the degeneration is now completed by means
of the following basic result:

Proposition C.11. Let X be a manifold and let f : X ! � be a proper map
which is smooth over �⇤. Put X0 = f�1(0). There is a fibrewise retraction
r : X ! X0. In particular, the homotopy type of X is that of the central fibre.
Let it : Xt ,! X be the inclusion. If x is an isolated singularity for a suitable
choice of a retraction r putting rt = r�it, we have an inclusion r�1

t
x ,! Milf,x

which is a homotopy equivalence.

The map rt : Xt ! X0 is called the specialization map. Topologically
it can be considered as a map r : F ! X0 compatible with the monodromy
action h : F ! F and X is obtained in two steps. First let X 0 be the quotient
of F ⇥R by the relation (x, t) ⇠ (h(x), t+1); then X is homeomorphic to the
mapping cone of r : X 0 ! X0.

Remark C.12. i) In the above setting, several constructions for a retrac-
tion have been proposed, see e.g. [Clem69, Clem77], [A’Cam, p. 238].
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ii) The above proposition remains true when X is any complex variety
mapping properly to the disk �. Since f is proper, we may view X as
embedded in some complex manifold M . We put Xt = f�1(t). Follow-
ing [G-M88, Part II, §6.13], we may then assume that f is stratified
(Prop. C.7,3) and we can assume that the strata of � consist of �⇤ and
0. Then f is a topological fibration over �⇤ and there is a fibrewise re-
traction r : X ! X0 of the total space onto X0, but r|X0 might not be
the identity.

Introduce the complex of sheaves

 fZ
X

:=Rrt⇤i
⇤

t
Z

X
,

the complex of nearby cocycles. Prop. C.11 can be used to describe its
cohomology sheaves Hq( fZ

X
). The stalk at x is the limit over open neigh-

bourhoods Ux of x of the (ordinary integral) cohomology group Hq(r�1

t
(Ux)).

Since for all small enough Ux the inverse image r�1

t
(Ux) is homotopy equiva-

lent to Milf,x, we find

[Hq( fZ
X

)]
x

= (Rqrt⇤ZX
)
x

= Hq(Milf,x) (C–7)

The specialization map induces a natural map of complexes of sheaves:

sp : Z
X0
! Rrt⇤ZX

.

On the level of cohomology sheaves at x, this induces the same map as the
one induced by the “specialization” map sp : r�1

t
(Ux) ! Ux. Its cone is the

suspension over the Milnor fibre so that Hq(Cone•(sp)) = H̃q+1(Milf ). Recall
(Theorem B.22) that there is a shift of 1 when we calculate this instead with
cones of maps between complexes. So, if we define the complex of vanishing
cocycles by

�fZ
X

:= Cone•(sp : Z
X0
! Rrt⇤ZX

),

we have
H̃q(Milf,x) ' [�fZ

X
]x. (C–8)

We want to investigate under which condition the direct images Rkf⇤ZX

are locally constant sheaves. Two properties play a role. The first has to do
with the monodromy action. We explain this first. Since there is a retraction of
X onto the singular fibre X0, the inclusion Xt ,! X induces a homomorphism

Hk(X0) ⇠= Hk(X) ! Hk(Xt)inv

to the submodule of classes invariant under the monodromy-operator T . We
say that the local invariant cycle property holds if this map is a surjec-
tion. Equivalently, the adjunction homomorphism

ak : Rkf⇤ZX
! j⇤j

⇤Rkf⇤ZX
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is a surjection. Indeed, this is clear on �⇤ while for any local system L on �,
the stalk of the sheaf j⇤L at 0 consists of global sections of L|�⇤, and these
can be identified with the T -invariants in a stalk Lx over a point x 2 �⇤.

The second property concerns the behaviour of vanishing cycles. We re-
formulate for cohomology the property that the map (C–2) is into. Consider
F , the Milnor fibre as sitting in a general (smooth) fibre X⇤. We let

Hn(X⇤)
r
⇤

��! Hn(F ) (C–9)

be the restriction map. Since it is dual to (C–2), vanishing cycles survive
globally precisely when r⇤ is onto.

Using the above two properties we formulate our criterion:

Lemma C.13. Let f : X ! S be a one-parameter family of n-dimensional
varieties with critical locus �(f). Assume that f has isolated singularities.
Then Rkf⇤ZX

is locally constant in the following cases:

1) If k 6= n, n + 1;
2) if k = n+1 and the vanishing cycles survive globally, i.e if the restriction
map (C–9) is surjective near each critical point.

If n = k and the local invariant cycle property holds near all critical values,
then the adjunction morphism

Rnf⇤ZX
! j⇤j

⇤Rnf⇤ZX

is an isomorphism. In this case Rnf⇤ZX
is not locally constant, but it is

completely determined by the local system j⇤Rnf⇤ZX
.

Proof. The result is clear away from the critical locus and so the assertion is
local with respect to the base. We may thus assume that S = � and that f is
smooth over�⇤. For simplicity we assume that X0 has only one singular point.
We use the shorthand notation B \ (X �X0) ! �⇤ for its Milnor fibration
(C–1). Let X⇤ be the general (smooth) fibre of f . Excision (Theorem B.2)
shows that

H̃k+1(X, X⇤) ⇠= H̃k+1(B, F ) ⇠= H̃k(F )

and since F has the homotopy type of a bouquet of n-spheres this is non-zero
only for k 6= n� 1. The long exact sequence for the pair (X,X⇤) then shows

Hk(X) ⇠�! Hk(X⇤), k 6= n, n + 1.

Since X retracts onto X0 this proves 1) and also yields an exact sequence

0 ! H̃n(X0) ! H̃n(X⇤)
r�! H̃n(F ) ! H̃n+1(X⇤) ! H̃n+1(X⇤) ! 0 (C–10)

which proves 2): the direct image Rn+1f⇤Z is locally constant if r is surjective.
The last assertion for n = k is clear. ut
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C.2.3 An Example: Lefschetz Pencils

A classical method to describe the cohomology of a projective variety induc-
tively is by means of its hyperplane sections. This method was developed
by Lefschetz. The idea is to vary a hyperplane section in a pencil and build
the cohomology from that of a hyperplane section and using the monodromy.
As a first step, there is Lefschetz hyperplane theorem which states roughly
that new cohomology appears only in the middle dimension. Modern proofs
use the fact that the complement of a hyperplane section being a�ne has no
cohomology in ranks beyond its complex dimension:

Theorem C.14. An a�ne variety of pure dimension n has the homotopy type
of a CW complex of dimension  n.

For a proof, see [G-M88, Part II, 5.1⇤]. As announced, we will deduce:

Theorem C.15 (Lefschetz’ hyperplane theorem). Let X be an n + 1-
dimensional projective variety and i : Y ,! X a hyperplane section containing
all the singularities of X. Then

i⇤ : Hk(X) ! Hk(Y )
⇢

is an isomorphism if k  n� 1
injective for k = n.

Dually

i⇤ : Hk(Y ) ! Hk(X)
⇢

is an isomorphism if k  n� 1
surjective for k = n.

Proof. By the long exact sequence in cohomology for the pair (X,Y ) it su�ces
to show that Hk(X,Y ) = 0 for k  n . Now By Lemma B.21 and the Poincaré
Duality Theorem B.24 (note that here it is essential that X�Y is smooth) we
have Hk(X,Y ) = Hk

c
(X�Y ) = H2n+2�k(X�Y ). By Theorem C.14 this group

indeed vanishes in the range we are interested in. The dual statement follows
from the fact that the surjective Kronecker homomorphism 0 = Hk(X,Y ) !
Hom(Hk(X,Y ), Z) is an isomorphism for all k  n, recalling that its kernel is
the torsion submodule of Hk�1(X,Y ) which is also the torsion submodule of
Hk(X,Y ). ut

Remark C.16. 1) The homotopy type of a smooth quasi-projective variety
X is that of a general hyperplane section Y modulo adjoining cells of di-
mension n+1. In particular, as before Hk(X,Y ) = 0 for k  n. For a proof
see [Hamm83, Theorem 5].
2) In the statement and proof of Theorem C.15 we may replace the constant
coe�cient Z by a local system. This follows from the fact that the exact
sequences that we use remain valid when we use local systems as coe�cients.

This result motivates the following definition.
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Hn

fixed
(Y ; Q) := Im(i⇤ : Hn(X; Q) ! Hn(Y ; Q)), (C–11)

Hn

var
(Y ; Q) :=Ker(i! : Hn(Y ; Q) ! Hn+2(X; Q)). (C–12)

It is not hard to see that we have a direct sum decomposition, orthogonal
with respect to cup product

Hn(Y ; Q) = Hn

fixed
(Y ; Q)�Hn

var
(Y ; Q).

The theory of Lefschetz pencils describes the second summand in terms of the
monodromy of the tautological family of all smooth hyperplane sections of X.

Definition C.17. A Lefschetz pencil on X is a pencil of hyperplane sec-
tions {Xu}u2P1 , which has at most one ordinary double point.

It is well known that Lefschetz pencils abound [Katz73, Proposition 3.3].

Definition C.18. The Lefschetz fibration associated to the Lefschetz pen-
cil is defined as follows. Let B ⇢ X be the base locus of the pencil, the codi-
mension two submanifold cut out by the linear space common to all members
of the pencil and introduce

X̃ := BlBX ! X

the blow up of X in this base locus. The Lefschetz fibration is the natural
fibration

f : X̃ = {(m, u) 2 X ⇥ P
1 | m 2 Xu} �! P

1 .

The Zariski-Van Kampen theorem [Kamp] states:

Proposition C.19. Let X ⇢ P
N be a projective manifold of dimension (n+1)

and let XU ! U be the tautological family of its smooth hypersurface sections
and let X` ! ` be a Lefschetz pencil. The natural map ⇡1(U \ `) ! ⇡1(U) is
a surjection.

As a consequence, the monodromy actions of the two agree on Hk(Y ), where
Y is any smooth fibre of f .

Let �(f) ⇢ P
1 be the discriminant locus of f . Each singular fibre X�

� 2 �(f) has exactly one ordinary double point x�, so there is exactly one
vanishing cycle. Take a generator for Hn(F�), where F� is the Milnor fibre
and let �� 2 Hn(Xt) be the class of its image in a nearby fibre Xt. A central
result is the following theorem, a proof of which can be found in [Lamot].

Theorem C.20. The self-intersection of the image of a vanishing cycle �� is
given by

(��, ��) = 0 for n odd,
(��, ��) = (�1)n/22 for n even.

The action of the local monodromy T� is trivial, except for rank n, where it is
described by the Picard-Lefschetz formulas
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T�(↵) = ↵+ (�1)
1

2
(n+1)(n+2)h↵, ��i�_� , ↵ 2 Hn(Xt; Q),

where �_
�

is Kronecker dual to �� and h�,�i denotes the Kronecker duality
pairing (B–6).

In particular ↵ is invariant under local monodromy if and only if ↵ annihilates
the space Q[��] generated by the vanishing cycle. Let�� be a su�ciently small
disk centred at �. The sequence dual to (C–10) shows that

Q[��]? = Ker
⇥
Hn(Xt; Q) ! Hn(f�1��; Q)

⇤?

= Im
⇥
Hn(f�1��; Q) ! Hn(Xt; Q)

⇤
.

We deduce:

Corollary C.21. For a Lefschetz fibration, the local invariant cycle property
holds.

The restriction map r in (C–10) is surjective, exactly when �� 6= 0 (in ratio-
nal homology) which is always the case when n is even since then (��, ��) 6= 0.
However for n odd �� can be a torsion class. Indeed: for any Lefschetz fibra-
tion of odd-dimensional quadric hypersurfaces in projective space, the fibres
have no middle cohomology and so �� = 0. However, it can be shown that this
anomaly does not occur if the degree is su�ciently large. The next theorem
C.23 shows that there is no rational vanishing cohomology if Hn(X) ! Hn(Y )
is an isomorphism. It also states that all vanishing co-cycles are conjugate un-
der monodromy, hence if the class in rational cohomology is zero for one of
them this must be the case for all of them. So the anomalous case occurs
precisely when the restriction Hn(X) ! Hn(Y ) is an isomorphism.

Corollary C.22. Let f : X̃ ! P
1 be a Lefschetz fibration associated to X with

general (smooth) fibre Y . Let �(f) be the critical locus and j : P
1 ��(f) ,!

P
1 the inclusion. Assume that the restriction Hn(X) ! Hn(Y ) is not an

isomorphism (this is always the case when n is odd and generically when n is
even). Then Rkf⇤Q is locally constant for k 6= n, while Rnf⇤Q = j⇤j⇤Rnf⇤Q.

As to the global situation, we have the following classical result [Lamot],
[Katz73b]:

Theorem C.23. 1) The variable cohomology Hn

var
(Y ; Q), Y a smooth fibre

of the Lefschetz fibration f : X̃ ! P
1, coincides with the vanishing co-

homology, i.e. it is spanned by the classes �_
�

dual to the vanishing cycles.
These classes are conjugate under the global monodromy of the fibration.
2) The fixed cohomology Hn

fixed
(Y ; Q) coincides with the image under restric-

tion
Hn(X̃; Q) ! Hn(Y ; Q).

Corollary C.24. 1) The fixed cohomology equals the subgroup of Hn(Y ; Q)
left invariant by the global monodromy group of the Lefschetz fibration.
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2) Introducing the constant sheaf I of invariant cohomology with fibre

It :=Hn

fixed
(Xt; Q), t 2 P

1 ��(f)

and the locally constant sheaf V of vanishing cohomology with fibre

Vt :=Hn

var
(Xt; Q), t 2 P

1 ��(f)

there is an orthogonal direct sum decomposition

j⇤Rnf⇤Q = I� V

and V is absolutely irreducible.

Historical Remarks. Stratified spaces have been introduced by Whitney and
Thom. Unfortunately much of this is folklore. The relevant literature can be collected
from [G-M88].

[Mil68] remains the standard reference for Milnor fibres. The localized version,
as developed in § C.2.2 which is well-adapted to both mixed Hodge theory and
D-modules is probably due to Deligne. The terminology “the local invariant cycle
theorem holds” as well as “vanishing cycles survive globally” is ours.

Lefschetz pencils made their appearance for the first time in Lefschetz’ funda-
mental treatise [Lef] in which an inductive approach to the study of algebraic cycles
has been proposed. In § C.2.3 we follow closely the presentation from [Katz73] and
[Katz73b]. Several attempts have been made to make Lefschetz’ arguments meet
modern standards of rigor [Lamot].
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Géométrie Algébriques d’Angers 1979, Sijtho↵, Noordho↵, Alphen a/d
Rijn, 107–127 (1979)

[Car85a] Carlson, J.: Polyhedral resolutions of algebraic varieties, Tr. A.M.S.
292, 595–612 (1985)

[Car85b] Carlson, J.: The one-motif of an algebraic surface, Comp. Math. 56,
271–314 (1985)

[Car87] Carlson, J.: The geometry of the extension class of a mixed Hodge
structure, in Algebraic Geometry, Bowdoin 1985 Proc. Symp. Pure
Math. A.M.S. 46-2, 199–222 (1987)

[Cart] Cartan, H.: Faisceaux analytiques sur les variétés de Stein (Exposé
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di↵érentiels et microdi↵érentiels. Sém. Bourbaki 522 (1977–1978),
Lect. Notes in Math. 710, 277-289, Springer Verlag, Berlin etc. (1979)
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Phn: Hodge number polynomial, 33
tr: trace map, 34
F
•: Hodge filtration, 34

V (r): Tate twist, 35
hsR, hs: category of Hodge structures,

36
S, 36
C: Weil operator, 37
L: Lefschetz motif, 38
MT, gMT, HG: (special) Mumford-Tate

group, 40
K

•9999KL
•: pseudo-morphism, 49

K
•

qis⇠9999K L
•: pseudo-isomorphism, 49

Hdg
•(X): Hodge-De Rham complex, 51

⌧Hdg: refined Thom class, 55
I

p,q: spaces for the Deligne splitting, 64
Fdir, F

⇤
dir, Find: Deligne’s three

filtrations, 67
�Hdg(K

•): Hodge-Grothendieck
characteristic, 70

Cone•(�): mixed cone, 76
Hdg

•(X, Y ), 78
ExtMHS(A, B), 79
J

p(H): Jacobian of a Hodge structure,
79

H
k
Hodge(K

•): Belinson’s absolute Hodge
cohomology, 84

⌦
•
X(log D): logarithmic de Rham

complex, 90
res: residue map, 90
resI : residue map, 93
Hdg

•(X log D), 98
K

•
p , K

•
1, 101

�p: standard p-simplex, 109
�, 4: simplicial, resp. semi-simplicial

category, 110
|K•|: geometric realization, 111
N(U)•: nerve of covering, 112
Sk•(F): skeletal filtration, 141
N

•
H

m(X; Q): coniveau filtration, 162
GHC(X, m, c): generalized Hodge

conjecture, 164
J

m(X): intermediate Jacobian, 164
Alb(X): Albanese torus, 164
Zm

hom(X): cycles homologous to zero,
164
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J
m
alg(X): algebraic intermediate

Jacobian, 165
R(d)Del: Deligne complex, 169
H

k
Del(X, R(d)), H

k
Y (X, R(d)Del): Deligne

cohomology, 169
R(d)DB, H

p
DB

(U, R(d)): Deligne Beilin-
son complex, resp. cohomology,
171

clDel(Y ), ⌧Del(Y ): Deligne class, resp.
Thom-Deligne class, 172

(⌦̃•
X , F ): filtered de Rham complex, 174

⌦
•
X : Kähler De Rham complex, 175

Torsq
E : torsion forms, 175

X
wn: weak normalization, 176

�(X, x): delta-invariant, 184
pg(X, x): geometric genus, 184
b
p,q(X, x): Du Bois invariants, 185
⇡k(X, x): k-th homotopy group, 192
QA: indecomposables of A, 193
R[G]: group ring of G, 193
[ , ]: bracket between homotopy groups,

195
dQ⇡1: J-adic completion of ⇡1, 197R

EDR(X): iterated integrals, 200
BA: bar construction of A, 202
B̄(M, A, N): reduced bar construction,

203
A(X)Q, A1(X): Sullivan De Rham

complex, 212
MA: minimal model for A, 220
K(⇡, n), 222
M(D): minimal model of diagram D, 227
L(⇡, k): Malcev algebra, 232
G

mon: algebraic monodromy group, 246
H

q
DR

(X/S): relative De Rham sheaf,
248

⌦
p
X/Y : relative forms, 249

Koz•: Koszul filtration, 250
rGM: Gauss-Manin connection, 250
V1: canonical fibre, 255
 fK•: nearby cycle complex, 262
sp: specialization, 262
�fK•: vanishing cycle complex, 262
can: canonical map, 263
var: variation, 263
⌦
•
X/�(log E): relative De Rham complex

with log-poles, 264
 

Hdg

f , 272

H
k(X1), 272

 
mot

f : motivic nearby fibre, 274
�

mot

f : motivic vanishing cycle, 276
Spn(V, F, �), Spi(g, x), Sp(g, x): spectral

invariants, 293

cC•Gdm(F): c-Godement resolution, 302
Ve

DRX : Verdier dualizing complex, 303
Ve

DX(F•): Verdier dual, 304
f

!: extra-ordinary pullback, 305
IC•X V: intersection complex, 307
IH

BM

k (X; V), IHk(X; V): intersection
cohomology, 307

D
b

cs(X; R), 308
⇡
VX : perverse extension, 309

⇡
H

k(F•): perverse cohomology, 311
⇡
j!⇤F•: intermediate perverse direct

image, 311
DX , FmDX , 314
�m(P ): symbol, 314
L⇠: Lie derivative, 315
DRX(M), DRX(M•): De Rham

complex, 317
D⇤X : dualizing module, 317
f
⇤N : analytic inverse image, 318
DX!Y : transfer module, 318
f+R: direct image for D-modules, 318
!X/Y : relative canonical bundle, 319
f+M•: direct image for D-modules, 319R q

f
: q-th direct image for D-modules,

319
rGM: Gauss-Manin connection, 320
DR•

X/S(M): relative de Rham complex,
320

N
_(X/Y ): conormal space, 326

D
b

coh(FDX), 328
�DR(X): De Rham characteristic, 329
N

_(Z/X): conormal space, 330
Char(M): characteristic variety, 331
D

b

h(DX), 331
D

b

rh(DX), 333
MHM(X): mixed Hodge modules, 338
@Fcs: Fuchs field, 348
MH(X, n): Hodge modules of weight n,

355
V

Hdg, 356
MH

pol(X, n): polarizable weight n

Hodge modules, 359
MHW(X), 366
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�
c
Hdg(S): motivic Hodge-Grothendieck

characteristic, 369
A
�: opposite category of A, 375

K
•

qis⇠��!L
•, 377

⌧kK
•, ⌧�k(K•), 377

K0(A), 378
Cyl•(f), 379
Cone•(f), 379
K(A), K

b(A), K
+(A), K

�(A) , 381
D(A), D

b(A), D
+(A), D

�(A), 383
RT : right derived functor of T , 388
H

i(X,F•), 389
Exti(N•

, K
•), 389

Hom
•(F•

,G•), 389
Ext

i(F•
,G•), 389

LT : left derived functor of T , 390
t
T : derived functor of T with respect to

t-structure, 390
Extn(A, B): Yoneda’s Ext-functor, 391
Grp

F A, GrF A, GrW
p MHA, GrW

A:
gradeds for decreasing, resp.
increasing filtrations, 394

�(K•): trivial filtration, 395
⌧(K•): canonical filtration, 395
D

+
FA: derived filtered category, 396

D
+

FWA: derived bi-filtered category,
396

s(K)n: simple complex associated to a
double complex K

•,•, 401
Sq(X; R), Sq(X, A; R): singular

q-chains, 405
Hq(X; R): singular homology with

R-coe�cients, 405
S

q(X; R), S
q(X, A; R): singular

R-cochains, 405
H

q(X; R): singular cohomology with
R-coe↵cients, 405

S
q
c (X; R): singular R-cochains with

compact support , 406
S

BM

q (X; R): Borel-Moore R-chains, 406
H

q
c (X, A; R): compactly supported

R-cohomology, 406

H
BM

q (X, A; R): Borel-Moore R-
homology, 406

H̃q(X; R), H̃
q(X; R): reduced R-

(co)homology, 407
Hq(X, A), H

q(X, A), H
BM

q (X), H
q
c (X),

407
C•Gdm(F) : Godement resolution for F ,

410
H

p
�(X,F•), 412

H
p
c(X,F•), 412

C
•(U,F): Čech complex, 415

Ȟ
q(X,F): Čech cohomology, 415

H
p,q

@
(X): Dolbeault cohomology, 417

Rf⇤, R
q
f⇤: direct image functors, 417

f
�1: (topological) inverse image functor,

418
f!: direct image functor, 419
H

p
Z(X,F•), 420

Cyl(f): (topological) mapping cylinder,
421

Cone(f): (topological) mapping cone,
422

[X]: orientation class, 422
DX , D

BM

X : Poincaré duality isomor-
phisms, 423

trX : trace map, 423
f!: Gysin morphism, 423
⌧(Y ): Thom class, 424
cl(Y ): fundamental chomology class,

425
[Y ]: integration current, 426
V X : constant system, 428R

�
!1!2 · · ·!r: iterated integral, 432

N(S, x): normal slice, 435
L(S, x): link, 435
µx: Milnor number of x, 437
Milf,x: Milnor fibre, 437
var: variation, 438
 f ZX , 439
sp: specialization, 439
�f ZX , 439
H

n
fixed(Y ; Q), H

n
var(Y ; Q): fixed and

variable cohomology, 441
N•Hm(X): filtration by niveau, 464
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1-connected algebra, 220
1-minimal model, 230

Abel-Jacobi map, 164
abelian category, 378
absolute Hodge class, 53, 245

— Hodge cohomology, 84
— Hodge cohomology group, 170

acyclic complex, 377, 388
— cover, 415

additive category, 378
— functor, 390

adjunction morphism, 418
— triangle, 308, 421

admissible variation, 363
a�nement, 142
Akizuki-Nakano vanishing theorem, 179
Albanese torus, 164
Alexander-Whitney homomorphism,

409
algebra: 1-connected, 220

—: augmentation, 193
—: canonical series, 221
—: connected —, 220
—: di↵erential graded —, 201
—: indecomposables, 193
—: Malcev —, 232
—: minimal —, 220

algebraic cycle, 18
algebraic group: reductive —, 41

—: semi-simple —, 41
algebraic monodromy group, 246
algebraic neighbourhood, 144

almost Kähler V -manifold, 56
analytic inverse image, 318
attachment homomorphism, 421
augmentation, 193

— ideal, 193
—:simplicial objects, 111

backshifted filtration (filtration
décalée), 403

Baer-sum, 393
bar construction, 202

—: reduced —, 203
bar-weight filtration, 214
Barth’s theorem, 28
bi-filtered D-modules with rational

structure, 365
—: quasi-isomorphism, 396

big monodromy, 246
biregular filtration, 395
Borel Moore homology: mixed Hodge

structure, 155
— cohomology, 406
— homology: pure part, 167

Borel-Serre theorem, 194
Bott-Chern cohomology, 16

c-Godement resolution, 302
c-soft resolution, 302
canonical bundle, relative —, 319

— extension, 256
— fibre, 255, 262
— filtration, 395
— singularity, 184
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cap product: mixed Hodge structures,
152, 155

category: t-structure, 386
—: core of t-structure, 386

Čech cohomology, 415
— complex, 415

characteristic variety, 324
Chern class, motivic —, 371

— form, 359
Chern’s theorem, 13
Clemens-Schmid exact sequence, 285
closed iterated integral, 204
co-algebra, Lie —, 195
co-bracket, 195
co-multiplication, 195
co-simplicial algebra, 111

— group, 111
cochain complexes, 375
Cohen-Macaulay ring, module, 58

— singularity, 58
coherent D-module, 321

— module, 321
cohomological descent, 116, 117
cohomology of a complex, 376
cohomology of algebraic varieties:

Hodge-Grothendieck characteris-
tic, 126

—: Hodge numbers, 126, 130
—: Hodge-Euler polynomial, 126

cohomology of smooth varieties: Hodge-
Grothendieck characteristic,
98

—: Hodge-Euler polynomial, 98
—: Hodge numbers, 98, 102

cohomology ring, 409
cohomology with compact support:

Hodge-Euler polynomial, 138
—: Hodge-Grothendieck character-

istic, 138
cohomology: compact support, 406
comparison of the three filtrations, 67
complex Hodge structure, 37

—: acyclic —, 388
—: bounded —, 377
—: cohomology, 377
—: derived —, 411
—: filtrations, 394
—: shifted to left, right, 376
—: tensor product, 375

composition product, 391
cone, 421

—: short exact sequence of —, 381
congruence (Yoneda-equivalence) of

extensions, 79
coniveau filtration, 162
connected algebra, 220
connecting homomorphism, 377
connection, 430
connection matrix, 240, 430

—: curvature, 240, 430
—: flat —, 240, 430
—: holomorphic —, 240
—: logarithmic poles, 253
—: regular meromorphic extension,

258
—: residue, 254, 348

conormal bundle, 325
— space, 326

constant mixed Hodge module, 365
constructible sheaf, complex, 308

—: finitely —, 141
—: cohomologically —, 308

core, 386
cosupport condition, 308
covariant derivative, 430
cubic fourfold: Hodge conjecture, 299
cubic sixfold: Hodge conjecture, 299
cubic threefold: Hodge conjecture, 298
cubical category, 110
cubical variety: cohomological descent,

117
—: hyperresolution, 117
—: resolution, 120

cup product, 409
—: mixed Hodge structures, 152,

155
—: morphism of mixed Hodge

structures, 156
current, 426
curvature, 240, 430

— of a connection, 240
cycle class map, 18
cylinder, 421

D-module with rational structure:
filtration, 355

—: good filtration, 323
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—: quasi-unipotent monodromy
along a hypersurface, 351

— with rational structure, 353
—: specializable —, 350
—: the (rational) V -filtration, 350

De Rham characteristic, 329, 370
De Rham cohomology, relative –, 248
De Rham complex, 240, 264, 317

—: Sullivan —, 212
—: filtered —, 174, 327
—: relative —, 249, 320

De Rham fundamental group, 233
— space, 12

De Rham’s theorem, 416
—: Chen’s version, 201

decomposition theorem, 362
degeneration maps, 109
deleted neighbourhood, 144
Deligne class, 172

— cohomology, 169
— complex, 168
— splitting, 64

Deligne-Beilinson complex, 171
— groups, 171

derived bi-filtered category, 396
— category, 383
— complex, 411
— filtered category, 396

di↵erentiable space, 199
di↵erential, 397
di↵erential forms: logarithmic poles, 90
di↵erential graded algebra, 201

—: connected –, 201
—: homotopic —, 222

di↵erential operator, 314
—: symbol, 314

di↵erential system, 321
dimension of locally compact topological

space, 302
direct image sheaf, 417

—: D-modules, 318
direct sum, 377
discriminant of a morphism, 119, 120
discriminant square, 119

—: Mayer-Vietoris sequence, 129
distinguished triangles, 384
Dolbeault’s theorem, 417
double complex, 401
Du Bois invariants, 185

— singularity, 185
dual complex, 317
duality: local —, 183

—: local Serre duality, 183
—: Serre-Grothendieck —, 58

dualizing complex, 58, 303
—: relative —, 305

dualizing left D-module, 317
dualizing sheaf, 183

edge-homomorphisms, 399
enough injectives, 387

— projectives, 387
exact couple, 397
exact sequence, split —, 378

—: extension class, 391
exact with respect to t-structure, 390
excision sequence, 421

— couple, 408
extension class, 391
extensions of Hodge structures, 79

—: Baer-sum, 393
—: congruence, 392
—: pull-back, 393
—: push-out, 393

extra-ordinary pull back, 305

face maps, 109
family of supports, 412
family: Kähler —, 30

—: projective —, 29
—: smooth Kähler —, 30

fibration: µ-th root, 261, 291
—: Hurewicz —, 196
—: principal —, 222
—: the hard Lefschetz property, 29

filtered T -acyclic resolution, 397
— complex, 394
— D-module with rational

structure, 355
— D-module with rational

structure: strict support, 355
— D-modules: derived category, 328
— D-modules: specializable —, 353
— De Rham complex, 174
— minimal model, 228
— quasi-isomorphism, 395

filtration by niveau, 166
—: D-modules, 323
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—: coniveau —, 162
—: first direct —, 66
—: horizontal —, 401
—: inductive —, 67
—: Koszul —, 250
—: minimal, 228
—: monodromy weight —, 269
—: morphisms, 395
—: quasi-isomorphisms, 395
—: second direct —, 67
—: skeletal, 141
—: strict morphisms, 395
—: vertical —, 401
—: weight —, 269

fine sheaf, 416
first comparison morphism, 70
first direct filtration, 66
fixed cohomology, 443
flabby sheaf, 410
flat connection, 240, 430
flat modules, 390
flat resolutions, 390
formal variety, 234
frame: holomorphic, meromorphic —,

257
Fubini-Study form, 15

— metric, 15
fundamental class, 347

—: Deligne class, 172
—: Hodge class, 51
—: Thom class, 53
—: Thom-Deligne class, 172

fundamental cohomology class, 424
fundamental group, De Rham —, 233
fundamental homology class, 423

Gauss-Manin connection, 249, 320
— system, 320

geometric genus, 184
— monodromy, 438
— realization, 111, 118
— variation of mixed Hodge

structure, 364
— variation of Hodge structure, 242

global invariant cycle theorem, 31
Godement resolution, 410
good compactification, 89
good resolution, 183
Gorenstein singularity, 183

graded-polarizable mixed Hodge
structure, 62

Grauert-Riemenschneider vanishing
theorem, 179

Gri�ths’ transversality condition, 241,
362

— theorem, 251
Grothendieck group, 37
Grothendieck’s induction principle, 295
group of n-fold extensions, 393

— of mixed Hodge extensions, 79
— of Yoneda extension, 393

group-like elements, 233
Gysin homomorphism, 423

— map, 19

H-space, 194
hard Lefschetz theorem, 26

— property, 29
harmonic forms, 12
Heisenberg group, 235
Hertling’s conjecture, 294
higher derived functors, 388

—direct images, 417
Hirsch extension, 220
Hodge ⇤-operator, 12

—class, 53
—class: absolute —, 53
—class: locus of Hodge classes, 245
—complex, 49
—complex of sheaves, 50
—complex of sheaves: comparison

morphism, 49
—complex: Hodge numbers, 50
—complex: polarizable —, 50
—conjecture, 18
—conjecture: generalized —, 164
—conjecture: homological version,

166
—conjecture: version for singular

varieties, 168
—decomposition, 17, 33
—decomposition in strong sense, 45
—decomposition theorem, 16
—decomposition: homology, 18
—filtration, 33, 34, 62, 241, 362
—filtration: putative —, 44
—group, 40
—inner product (global), 14
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—inner products, 13
—isomorphism theorem, 12, 14
—metric, 15
—module, 355
—module extension, 357
—module, polarizable, 358
—module, polarization, 358
—module: constant —, 365
—module: smooth –, 362
—number polynomial, 33
—numbers, 17, 33, 34
—structure, 17, 33
—structure of Tate, 17
—structure: complex —, 37
—structure: intermediate Jacobian,

164
—structure: level, 162
—structure: polarizable, 39
—structure: polarization, 38, 39
—structure: real —, 34
—structure: supported on subvari-

ety, 162
—structure: weight, 34
—structures: extensions, 79
—structures: Grothendieck ring, 38
—structures: iterated extensions, 83
—structures: morphisms, 17, 34, 36
—structures: multiplicative

extension, 35
—to De Rham spectral sequence, 44
—vectors, 41

Hodge-De Rham complex, 98
— complex of sheaves, 51
— complex: semi-simplicial

logarithmic pairs, 125
— diagram, 226

Hodge-Euler polynomial, 71
—: vanishing cohomology, 276

Hodge-Grothendieck characteristic, 50,
70, 369

— class: vanishing cohomology, 275
Hodge-Riemann bilinear relations, 27

— form, 27
holomorphic connection, 240

— De Rham complex, 417
— frame, 257

holonomic D-module, 331
— complex, 331

holonomy group, 13

homotopic di↵erential graded algebras,
222

homotopy, 380
— category, 381
— De Rham theorem, 201
— equivalence, 196, 380
— fibre, 196
— functional, 204
— invariant, 379, 381

Hopf algebra, 195
—: di↵erential graded —, 201

horizontal section, 240
Hurewicz theorem, 192

— fibration, 196
— homomorphism, 192

hypercohomology group, 389

indecomposable local system, 245
indecomposables, 193
inductive filtration, 67
injective object, 387

— resolution, 387, 388
integrable connection, 240
integration current, 426
intermediate Jacobian, 164

—: algebraic —, 165
—: Hodge-theoretic —, 165

intersection cohomology, 361
— complex, 307

inverse image sheaf, 418
—: D-modules, 318

involutive subspace, 330
isotropic subspace, 330
iterated extensions of Hodge structures,

83
— integral, 200, 204, 432

J-adic completion, 197
Jacobian of a mixed Hodge structure,

79
Jouanolou-trick, 142

k-opposed filtration, 34
Kähler di↵erentials, 175

— De Rham complex, 175
— family, 30
— form, 15
— manifold, 2
— metric, 15
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Künneth formula, 410
Kashiwara’s equivalence, 325
Kashiwara-Malgrange filtration, 351
Kodaira-Nakano vanishing theorem, 368
Kollár-Ohsawa vanishing theorem, 368
Koszul filtration, 250
Kronecker homomorphism, 409

— pairing, 409
Kummer variety, 57
Künneth formula, 133

Lagrangian subspace, 330
— subvariety, 330

Laplacian, 12
Lefschetz fibration, 442

—fibration: Leray spectral sequence,
106

— isomorphism, 25
— operator, 360
— pencil, 442
— pencil: Leray filtration, 107

Lefschetz’ hyperplane theorem, 29, 441
left exact functor, 388

— with respect to t-structure, 390
left-right transform, 316
left, right fractions, 383
Leray filtration: morphisms of

quasi-projective varieties, 143
— spectral sequence, 345
— spectral sequence for compact

support: Hodge numbers, 144
— spectral sequence, perverse –,

344
— spectral sequence: — for pairs,

144
— spectral sequence: one-parameter

families, 104
Leray’s theorem, 415
level of Hodge structure, 162
Lie co-algebra, 195
Lie-derivative, 315
link of algebraic subset, 145

—: semi-purity, 150
local cohomology, 420
local invariant cycle property, 439

— cycle theorem, 284
local system, 428

— of geometric origin, 362
— : (absolutely) irreducible —, 245

—: associated intersection complex,
307

—: indecomposable, 245
—: perverse extension, 312

locally constant sheaf, 428
locus of an invariant cycle theorem, 31
log canonical singularity, 185

— structure, 99
— terminal singularity, 185

logarithmic de Rham complex, 90
— embedding, 146
— pair, 124
— poles, 253

lomotopy, 222

Malcev algebra, 232
— : primitive elements, 232

manifold: Kähler, 2
mapping cone, 379, 421

— cylinder, 379, 421
marking a complex of mixed Hodge

structures, 83
Massey triple product, 152, 234
Mayer-Vietoris sequence, 408

— sequence: discriminant square,
129

— spectral sequence, 115
meromorphic extension, 257

— frame, 257
metric: Fubini-Study, 15

— : Kähler —, 15
Milnor fibration, 437

— fibre, 291
— fibre: geometric monodromy, 438
— fibre: mixed Hodge theory on

cohomology, 292
— number, 437

minimal algebra, 220
— filtration, 228
— model (of algebra), 220
— model: bigraded —, 227
— model: complex —, 228
— model: filtered —, 228

mixed cone, 76
mixed Hodge complex, 70

— complex of sheaves, 70
— complexes of sheaves: weak

equivalence, 75
— complex: tensor product, 75
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— diagram, 225
— diagrams: (elementary) equiva-

lence, 225
— module, 366
— module, smooth –, 365
— modules, 338
— structure, ind –, 197
— structure, pro —, 197
— structure: graded-polarizable —,

62
— structure: Borel Moore homology,

155
— structure: Hodge numbers, 62
— structure: Hodge-Euler polyno-

mial, 62
— structure: Jacobian, 79
— structure: pure –, 130
— structure: split over R, 62
— structure: weight occurs, 130
— structures: cap, cup product, 152
— structures: extra-ordinary cup

product, 156
— structures: morphisms, 62
— structures: Poincaré duality, 152
— structures: separated, 80
— structures: Tate twist, 63
— substructure, 65

monodromy is quasi-unipotent, 267
— representation, 428
— theorem, 259
— transformation, 263
— weight filtration, 260, 269, 355
— weight spectral sequence, 273
—: algebraic —, 246
—: big —, 247
—: geometric —, 438

morphism between two mixed Hodge
complexes of sheaves , 72

— between two mixed Hodge
complexes, 72

— of complexes, 377
— of filtered complexes, 395
— of Hodge structures, 17, 34, 36
— of mixed Hodge structures, 62
— of spectral complexes, 397
— of variations of Hodge structure,

242
—: discriminant, 119
—: strict transform, 120

motivic Chern class transformation, 371
— Hodge-Grothendieck characteris-

tic, 369
— nearby fibre, 274
— vanishing cycle, 276

multiplicative mixed Hodge complex,
213

— system, 382
Mumford-Tate group, 36, 40, 244

n-fold extension, 391
nearby cocycles: complex of —, 439

— cycle functor, 263, 355
nearby, vanishing cycle functor, 313
nilpotent orbit, 260

— variety, 197
non-characteristic morphism, 326
normal crossing divisor, 89, 253

— singularity, 184
normalized mixed Hodge complex, 72
normalization: weak —, 176

obstruction class, 222
one-parameter degeneration, 260

— Kähler degeneration, 280
opposite category, 375
ordinary double point: mixed Hodge

structure, 292
orientated pseudomanifold, 434
orientation class, 423

— sheaf, 303

paracompact, 412
paracompactifying family of supports,

412
perfect topological space, 414
perverse complex, 308

— complexes: simple objects, 312
— truncation, 311

Picard-Lefschetz formulas, 442
plots, 199
Poincaré duality, 430

— : mixed Hodge structures, 152
— theorem, 423

Poincaré residue map, 254
Poincaré-Lefschetz duality, 424
polarizable Hodge structure, 39
polarization, 38, 39
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— of a variation of Hodge structure,
242

— of Hodge modules, 358
polarized Hodge module, 358

— mixed Hodge complex, 70
Postnikov tower, 223
pre-abelian category, 376
pre-log structure, 99
primitive cohomology, 25

— covector, 24
— decomposition, 21, 26
— form, 25
— subspace, 20

principal fibration, 222
projection formula, 424
projective family, 29

— morphism, 29
— object, 387
— resolution, 387

proper direct image functor, 419
— modification, 56, 119
— morphism of cubical varieties:

discriminant, 120
pseudo-isomorphism, 49
pseudomanifold, 433
pull back, extra-ordinary, 305
pure, 130

quartic fourfold: Hodge conjecture, 299
quasi-isomorphism, 377
quasi-smooth variety, 57
quotient mixed Hodge structure, 65

rational filtration, 348
— Postnikov tower, 223
— singularity, 184

reduced bar construction, 203
reduced (co)homology, 407
reductive algebraic group, 41
regular holonomic complex, 333

— meromorphic extension, 258
— sequence, 58

relative canonical bundle, 319
— De Rham cohomology groups,

248
— De Rham complex, 249, 320
— De Rham complex with log-poles,

264
— di↵erential forms, 249

— dualizing complex, 305
— weight filtration, 363

residue map, 90, 93
— of the connection, 254

resolution, 387
— of a sheaf, 114
— of a variety, 119

retraction, 80, 379
Riemann-Hilbert correspondence, 258,

334
right derived functor, 388

— exact functor, 390
— exact with respect to t-structure,

390
right-left transform, 316
root of a fibration, 261, 291
rug function, 144

Saito’s vanishing theorem, 367
scissor relations, 139
second comparison homorphism, 71

— comparison morphism, 70
— direct filtration, 67

section, 379
semi-simple algebraic group, 41

— : polarizable variations of Hodge
structure, 243

semi-simplicial category, 110
— logarithmic pair, 124
— resolution, 116, 117
— space: cohomological descent,

116
— space: sheaf cohomology, 115
— variety: cohomological descent,

117
sheaf cohomology, 115

— of di↵erential operators, 314
— of invariant cohomology, 443
— of nearby cocycles, 262
— of vanishing cocycles, 262
— of vanishing cohomology, 443

shu✏e, 202
simple complex, 401

— normal crossing divisor, 89, 253
simplicial space: sheaf, 114

— category, 110
— objects: augmentation, 111
— set: chain complex, 112
— space, 111
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— variety, 111
singular (co)chains, 112

— (co)homology, 112
— cohomology, 405
— homology, 405
— simplex, 111, 405

singularity: : canonical —, 184
— : Cohen-Macaulay —, 58
— : Du Bois —, 185
— : geometric genus, 184
— : good resolution, 183
— : Gorenstein —, 183
— : index, 185
— : log canonical, 185
— : log terminal —, 185
— : (weakly) normal —, 184
—: quotient —, 58
—: rational —, 184
—: spectrum, 293

skeletal filtration, 141
— spectral sequence, 141

smooth mixed Hodge module, 365
solution complex, 322

— module, 322
specializable D-modules, 350

— filtered D-module, 353
specialization, 262, 438

— diagram, 261
— map, 275
— triangle, 263

spectral sequence, 397
— of double complex, 401
—: abutment, 399
—: convergence, 399
—: degenerates at Er, 399
—: edge-homomorphisms, 399
—: morphisms, 397
—: skeletal —, 141
— for derived fuctors, 402

spectrum of singularity, 293
—: semi-continuity, 294
—: symmetry, 293

spliced extension, 394
split exact sequence, 378
Stein manifold, 416
stratification, cellular, 142

—: complex analytic —, 434
—: link, 435
—: normal slice, 435

—: topological —, 433
—: Whitney —, 434

stratum: link, 433
strict morphism of filtered complexes,

395
— support condition, 355

Sullivan De Rham-complex, 212
— algebra, 212

support, 412
— condition, 308
— of mixed Hodge module, 338

supports: family of —, 412
—: paracompactifying family of —,

412
suspension (of map), 199

t-structure, 386
Tate twist, 17, 35, 51, 63
tensor product of complexes of sheaves,

304
— of mixed Hodge complexes, 75

theorem of the fixed part, 103
Thom class, 53, 424
Thom’s isomorphism theorem, 425
Thom-Deligne class, 172
Thom-Sebastiani propertty, 294
topological normal, 434
toric variety, 57
trace map, 18, 34, 281, 423
transfer module, 318
transport map, 432
transverse morphism, 326
tranversality: Gri�ths’ —, 241
triangle in a category, 383
triangles: distinguised —, 384
triangulated category, 385
trivial filtration, 395

universal coe�cient theorem, 408

V -filtration, 350
V -manifold, 56
vanishing cocycles: complex of —, 439

— cohomology, 275, 443
— cycle, 437
— cycle functor, 263, 355
— theorem, 179, 180, 367, 368

variation, 263, 438
variation of Hodge structure, 241, 356
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— of Hodge structure: polarization,
242

— of mixed Hodge structure, 362
variety: resolution, 119
Verdier duality, 301

— duality theorem, 305, 306

Wang sequence, 277
—: modified —, 279

weak Lefschetz theorem, 29
— normalization, 176

— splitting, 64
weakly normal singularity, 184
weight filtration, 62, 269, 340, 362

— for nilpotent endomorphism, 260
weighted projective space, 57
Weil operator, 27, 37
Whitehead product, 195
Whitney stratification, 434

Yoneda class, 393


